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Highlights

1. EC-containing particles comprised the largest fraction of cloud residues (49.3% by

number).

2. Amine particles represented 0.2% to 15.1% by number of the cloud residues dependent

on the air mass history.

3. Nitrate intensity increased in the cloud residues relative to the ambient particles but

decreased compared with interstitial particles.

4. Sulfate intensity increased in the aged EC and OC cloud residues and decreased in the

dust and Na-rich cloud residues.
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Abstract

To estimate how atmospheric aerosol particles respond to chemical properties of cloud
droplets, a ground-based counterflow virtual impactor (GCVI) coupled with a real-time
single-particle aerosol mass spectrometer (SPAMS) was used to assess the chemical
composition and mixing state of individual cloud residue particles in the Nanling Mountain
Range (1,690 m a.s.l.), South China, in January 2016. The cloud residues were classified
into nine particle types: Aged elemental carbon (EC), Potassium-rich (K-rich), Amine,
Dust, Pb, Fe, Organic carbon (OC), Sodium-rich (Na-rich) and Other. The largest fraction
of the cloud residues was the aged EC type (49.3% by number), followed by the K-rich
type (33.9% by number). Abundant aged EC cloud residues that internally mixed with
inorganic salts were found in air masses from northerly polluted areas. The number fraction
(NY) of the K-rich cloud residues significantly increased within southwesterly air masses
from fire activities in Southeast Asia. In addition, the Amine particles represented 0.2% to
15.1% by number to the cloud residues when air masses changed from northerly to
southwesterly sources. The Dust, Fe, Pb, Na-rich and OC particles had a low contribution
(0.5-4.1% by number) to the cloud residues. An analysis of the mixing state of cloud
residues showed that the Dust and Na-rich cloud residues were highly associated with
nitrate. Sulfate intensity increased in the aged EC and OC cloud residues and decreased in
the Dust and Na-rich cloud residues relative to both ambient and interstitial particles. A
comparison of cloud residues with interstitial particles indicated that a higher Nf for K-rich
particles and a lower Nf for the aged EC particles were found in the cloud residues. Relative
to the ambient and interstitial particles, the cloud residues exhibited larger size distributions.

To our knowledge, this study is the first report on in situ observation of the chemical
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composition and mixing state of individual cloud residue particles in China. This study
increases our understanding of the impacts of aerosols on cloud droplets in a remote area

of China.

Keywords: GCVI, SPAMS, cloud residues, mixing state, South China

1 Introduction

Aerosol-cloud interaction influences the thermodynamic and radiation balance of the
atmosphere (IPCC, Boucher et al., 2013). Atmospheric aerosol particles can act as cloud
condensation nuclei (CCN) and subsequently affect the chemical and physical properties
of cloud droplets, which in turn influence global and regional climate change. The ability
of atmospheric aerosol particles to act as CCN, particularly in terms of temporal and spatial
variation, may usefully improve estimates of climate change. Anthropogenic particles have
been observed to be enriched in the cloud droplets at Schmiicke (Roth et al., 2016).
However, a lesser abundance of anthropogenic particles was found in the mixed-phase
clouds during the Cloud and Aerosol Characterization Experiment (CLACE 6) (Kamphus
et al., 2010). Therefore, it is crucial to assess how atmospheric aerosol particles contribute
and respond to the chemical composition of cloud droplets in different regions.

The formation of CCN is dependent on the size and chemical composition of
atmospheric aerosol particles at a given supersaturation (McFiggans et al., 2006). A change
in the chemical composition of atmospheric aerosol particles during atmospheric aging
processes can strongly alter their CCN ability. The presence of hydrophobic surface films
lowers the CCN ability of atmospheric aerosols (Andreae and Rosenfeld, 2008). Elemental

4
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carbon (EC) particles, normally considered insoluble, show high CCN activity after mixing
with sulfuric acid (Zhang et al., 2008). However, sulfate and nitrate, which are generally
regarded as soluble materials, were found in particles ranging from high to low
hygroscopicity (Herich et al., 2008). Furthermore, several cloud measurements have
pointed to a lower Nf of sulfate in cloud droplets relative to ambient or interstitial particles
(Twohy and Anderson, 2008; Pratt et al., 2010a). On the contrary, other study have reported
a larger Nf of sulfate in cloud droplets (Roth et al., 2016). These discrepancies suggest that
the influence of the mixing state of atmospheric aerosol particles on CCN activity remains
unclear.

The combined technique of a counterflow virtual impactor (CVI) and Aerosol Mass
Spectrometer (AMS) or single-particle measurement is widely used to characterize the
chemical composition and mixing state of individual cloud/fog droplet residue particles.
These studies mainly focus on Europe (Drewnick et al., 2007; Kamphus et al., 2010; Roth
et al., 2016; Schneider et al., 2016) and North America (Hayden et al., 2008; Berg et al.,
2009; Pratt et al., 2010b; Zelenyuk et al., 2010). Over the past three decades, China has
undergone rapid economic growth accompanied by increased aerosol emissions. Scientists
have worked to increase our understanding of an emissions inventory and the temporal and
spatial variation of atmospheric aerosols in China (Zhang et al., 2012b). However, few
studies employ direct observation of the chemical composition and mixing state of
cloud/fog droplets. Bi et al. (2016) used a ground-counterflow virtual impactor (GCVI)
coupled with a real-time single particle aerosol mass spectrometer (SPAMS) to explore the
chemical composition and mixing state of single fog residue particles in an urban area of

South China at ground level. They found abundant anthropogenic emitted particles
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including soot or element carbon (EC) in fog droplets. Here, we present a study on the
chemical composition and mixing state of individual cloud residue particles at a mountain
site. The same experimental methods of Bi et al. (2016) were used in this study on the
summit of South China’s Nanling mountain region. The size distribution, chemical
composition and mixing state of cloud residues during cloud events are discussed.
Moreover, the chemical compositions of ambient and interstitial particles were also
compared with the cloud residues. The aim of this study is to assess the potential effects of
anthropogenic aerosols from regional transportation on cloud formation and to investigate

the dominant particle types in cloud droplets at a mountain site in South China.

2 Experimental

2.1 Measurement site

Measurements were carried out January 15-26,2016. The sampling site was located in the
Nanling Background Station (112° 53 56” E, 24° 41° 56” N, 1,690 m a.s.1.) at the National
Air Pollution Monitoring System in South China (Figure S1). This station is 200 km north
of the metropolitan city Guangzhou and 350 km north of the South China Sea. This site is
also surrounded by a national park forest (273 km?) where there are hardly any emissions
from anthropogenic activities. However, during the winter monsoon period, air pollution
from northern China moves south to the southern coastal region and crosses the study

region (Lee et al., 2005).

2.2 Instrumentation
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In this study, a GCVI inlet system (GCVI Model 1205, Brechtel Mfg. Inc.) was used to
sample cloud droplets with a diameter greater than 8§ pm. The sampled cloud droplets were
passed through an evaporation chamber (air flow temperature at 40 °C), where the
associated water was removed and the dry residue particles, considered CCN, remained.
The particle transmission efficiency of the cut size (8 um) was 50% (Shingler et al., 2012).
The enrichment factor of the particles collected by the GCVI inlet was estimated to be 5.25
based on theoretical calculation (Shingler et al., 2012). Ambient particles were collected
through an ambient inlet with a cut-off acrodynamic diameter (dva) of 2.5 um when no
cloud events were present. Additionally, interstitial particles were sampled through the
ambient inlet during cloud events. The cloud droplet residues, interstitial particles or
ambient particles were subsequently analyzed by a suite of aerosol measurement devices,
including a SPAMS (Hexin Analytical Instrument Co., Ltd., Guangzhou, China), a
scanning mobility particle sizer (SMPS) (MSP Cooperation) and an aethalometer (AE-33,
Magee Scientific Inc.). Detailed information and parameter settings regarding the GCVI
operation can be found in the work of Bi et al. (2016). Previous studies have found that the
average size of cloud droplets in this region was approximately 10 pm, with a
corresponding liquid water content of 0.11-0.15 g m 3 (Deng et al., 2007). Therefore, it is
reasonable to assume that particles larger than 8 pm are cloud droplets. Here, we focus on
in situ observations of the size-resolved chemical composition and the mixing state of
single cloud residue particles measured by the SPAMS. Meteorological parameters and
PMazs values at this site were provided by Guangdong Environmental Monitoring Center.
A detailed operational principle of the SPAMS has been described elsewhere (Li et al.,

2011). Briefly, aerosol particles are drawn into SPAMS through a critical orifice. The
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particles are focused and aerodynamically sized by two continuous diode Nd:YAG laser
beams (532 nm). The particles are subsequently desorbed/ionized by a pulsed laser (266
nm) triggered exactly based on the velocity of the specific particle. The positive and
negative ions generated are recorded with the corresponding size of each singe particle.
The velocity is related to vacuum dva using a calibration curve created from the measured
velocities of a series of polystyrene latex spheres (Nanosphere Size Standards, Duke
Scientific Corp., Palo Alto) with predefined sizes. Particles measured by SPAMS mostly
fell within the size range of dva 0.2-2.0 um (Li et al., 2011). This makes it impossible to

effectively detect particles that exceed such a size range (Figure S2).

2.3 Definition of cloud events

To reliably identify the presence of cloud events, an upper-limit visibility threshold of 5
km and a lower-limit relative humidity (RH) threshold of 95% were set in the GCVI
software (Bi et al., 2016). Three long-time cloud events occurred during the periods of
16:00 (local time) 15 January - 07:00 17 January (cloud I), 20:00 18 January - 12:00 19
January (cloud IT) and 17:00 19 January - 13:00 23 January (cloud III), as marked in Figure
1. In addition, a cloud event occurred during 14:40 - 15:00 17 January, but we did not
complete an analysis due to the short duration of this cloud event. The average values of
cloud droplet concentrations integrated by the SMPS were 218 cm™, 284 cm™ and 272
cm? for cloud I, cloud II and cloud III, respectively (Figure S2). Note that during cloud
events, RH was close to 100%, as illustrated in Figure 1. Hazy days associated with low
visibility were almost completely excluded in this study due to the low level of PMas (~

12.7 ug m™>). A rainfall detector of the GCVI system was also used to exclude rainy droplet
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contamination. When cloud events occurred without precipitation, sampling was

automatically triggered by the GCVI control software.

2.4 Particle classification

During the study period, a total of 73996 sampled particles including 49322 ambient, 23611
cloud residues and 1063 interstitial particles with bipolar mass spectra were chemically
analyzed in the size range of dva 0.2-1.9 um. The sampled particles were first classified
into 101 clusters using an Adaptive Resonance Theory neural network (ART-2a) with a
vigilance factor of 0.75, a learning rate of 0.05, and 20 iterations (Song et al., 1999). By
manually combining similar clusters, aged EC, Potassium-rich (K-rich), Amine, Dust, Fe,
Pb, Organic carbon (OC), and Sodium-rich (Na-rich), eight major particle types with
distinct chemical patterns were obtained, which represented ~99.9% of the population of
the detected particles. The remaining particles were grouped together as “Other”.
Assuming that number of individual particles follows Poisson distribution, standard errors

for number fraction of particle type were estimated (Pratt et al., 2010a).

3 Results and discussion

3.1 Back trajectories and meteorological conditions

Back air trajectories in this study were calculated using the Hybrid Single Particle
Lagrangian Integrated Trajectory (HY SPLIT Model). During the study period, the station
was mainly affected by southwesterly or northerly air masses (Figure 2). The southwesterly
air masses, accompanied by warm and moist airflows, occurred during 15-17 and 19-22

January, which promoted cloud formation (Figure 1). Conversely, the northerly air masses,
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associated with cool and dry airstreams, occurred during 18 and 23-26 January and led to
a decrease in temperature and relative humidity. Meteorological conditions were unstable,
with high southwesterly flow (~ 6.5 ms™!) during 15-17 and 20-22 January (Figure 1). The
level of PM2.s remained low with a value of approximately 3 pug m™ for this time period.
A high level of PM2s (~20 pg m™>) was observed during 18 January when the northerly
flow dominated. Similarly, the average PMas value reached 24 ug m™> during 24-26
January when the local northerly and southwesterly flows occurred alternately. However,
the particles still originated from northerly air masses for this period (Figure 2). During 23-
24 January, a big freeze associated with a violent northerly flow and a wind speed that
exceeded the upper-limit speed (~12 m/s) of a wind speed sensor resulted in a sharp

decrease in temperature (Figure 1).

3.2 The chemical characterization of cloud droplet residues

Figure 3 shows the average positive and negative mass spectra of nine particle types. The
aged EC particles were identified by EC cluster ions (e.g., m/z £12C"~, £36C3"", +48C4"",
£60Cs"", ...) and a strong sulfate ion signal (m/z -97HSO4") and some organic markers
(m/z 27, 37). The aged EC particle type was the largest fraction (49.3% by number) of the
cloud residues (Figure 4). In addition, the number fraction (Nf) of aged EC particles in the
cloud residues significantly decreased while size increased (Figure S3). The K-rich
particles exhibited the highest peak at m/z 39K™, mainly combined with sulfate and nitrate
(m/z -46NO2", -62NO3"). The K-rich particles presumably resulted from biomass/biofuel
burning (Moffet et al., 2008; Zhang et al., 2013). The K-rich particle type, the second

largest contributor, accounted for 33.9% by number of the cloud residues (Figure 4). Aged
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EC and K-rich particles mainly originated from combustion processes (Andreae and
Rosenfeld 2008; Bond et al., 2013). The Nanling mountain sampling site does not contain
any sources of anthropogenic emissions; thus, the abundant aged EC and K-rich particles
in cloud residues are expected to come from regional transportation.

The Amine particles were characterized by related amine ion signals at m/z
58C2HsNHCH:", 59N(CH3)3" (trimethylamine, TMA) and 86CsHi2N" (Angelino et al.,
2001;Moffet et al., 2008;Pratt and Prather, 2010). This particle type also contained sulfuric
acid ion signals at m/z -195H(HSO4)2", indicative of acidic particles (Rehbein et al., 2011).
The Amine particles represented 3.8% by number of the cloud residues (Figure 4), mainly
within the size fraction of 0.7-1.9 um (Figure S3). A recent study also showed a low
fraction (<10% by number) of amine species in the cloud residues (Roth et al., 2016). It
has been reported that in-cloud/fog processing could enhance amine species (Rehbein et
al.,, 2011; Zhang et al., 2012a). However, this possibility was not supported by the
observations of Bi et al. (2016), who did not detect amine-containing particles in the fog
residues. In this study, the Nf of the Amine particles varied from 0.2% to 15.1% of the
cloud residues dependent on air mass history (see Sect. 3.4).

The Dust particles presented significant ions at m/z 40Ca*, 56CaO*/Fe*, 96Ca0" and -
76Si037, with an internal mixture of sulfate and nitrate. This type contributed 2.9% by
number of the cloud residues (Figure 4). Dust/mineral aerosol accounted for approximately
35% of the total aerosol mass in China (Zhang et al., 2012b). Approximately 12% by
number of fog contained dust particles at ground level in South China (Bi et al., 2016). At
Mt. Taishan in northern China, a high concentration of Ca?" in cloud/fog water was mainly

attributed to a sandstorm event (Wang et al., 2011). In this study, a low fraction (2.9% by
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number) of dust cloud residue suggests that dust particles did not play a significant role in
cloud formation in South China or that they occupied larger CCN (Tang et al., 2016), which
cannot be detected by the SPAMS.

The Fe and Pb particles had their typical ions at m/z 56Fe” and 208Pb*, respectively, and
were associated with sulfate and nitrate. The Fe and Pb particles made up 4.1% and 0.5%
by number of the cloud residues, respectively (Figure 4). The presence of Fe in the cloud
droplets might play an important role in aqueous-phase SO2 catalytic oxidation in cloud
processing (Harris et al., 2014), thus accelerating the sulfate content of Fe-containing
particles in cloud processing.

The Na-rich particles were mainly composed of ion peaks at m/z 23Na* and 39K" in the
positive mass spectra, and inorganic soluble nitrate and sulfate species in the negative mass
spectra. Moffet et al. (2008) attributed Na-rich particles to varied sources of industrial
emissions or sea salt particles and dry lake beds. The OC particles presented dominant
intense OC signals (e.g., m/z 27C2H3", 37CsHY, 43C2H30" and 51CsHs™) and abundant
sulfate. The Na-rich and OC types contributed 3.0% and 2.4% by number to the cloud
residues, respectively (Figure 4). Internally mixed EC with metal signatures was observed
in the Other particles. However, Other particles contributed only 0.1% by number to the

cloud residues, which suggests their minor contribution to cloud formation (Figure 4).

3.3 Mixing state of secondary species in cloud residues
Particles that coated with inorganic species (e.g., sulfate, nitrate and ammonium) can
facilitate water uptake to growth into cloud droplets (Andreae and Rosenfeld, 2008).

Number fractions of sulfate were found to be highly related to the K-rich (91%), OC
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(100%), aged EC (98%), Pb (74%), Fe (93%) and Amine (99%) cloud residues, as shown
in Figure 5. Lower number fractions of sulfate were observed in the Na-rich (41%) and
Dust (42%) cloud residues. In contrast, nitrate contributed 89% and 88% by number to the
Na-rich and Dust cloud residues, respectively. The heterogeneous and/or aqueous
chemistry of HNO3 in the Na-rich and dust particles may lead to the preferential enrichment
of nitrate (Li and Shao, 2009). The detection of nitrate in the cloud residues was thought
to be the form of ammonium nitrate by estimating the ratio of m/z 30 to m/z 46 in AMS
data (Drewnick et al., 2007; Hayden et al., 2008). However, low portions of ammonium in
the Na-rich (23% by number) and Dust (15% by number) cloud residues suggest that
ammonium nitrate is not a predominant form of nitrate in these cloud residue particle types.
Note that the evaporation chamber of the GCVI may lead to a reduction of ammonium
nitrate in the cloud residues (Hayden et al., 2008; Prabhakar et al., 2014). However, this
effect would be insignificant because the dry carrier air of the GCVI was set at 40 °C. A
volatility study found that the temperature to evaporate ammonium nitrate particles reached
at least 75 °C (Bi et al., 2015). We found that nitrate accounted for only 46% by number
of the aged EC cloud residues, which is significantly less than the contribution of sulfate.
Previous studies found that aged EC (soot) fog/cloud residues are mainly internally mixed
with sulfate (Pratt et al., 2010a; Harris et al., 2014; Bi et al., 2016). The presence of
abundant sulfate in aged EC cloud residues was considered to be a good CCN species
before activation, rather than formed by in-cloud processing (Bi et al., 2016; Roth et al.,
2016). High portions (75-86% by number) of ammonium were observed for the OC and
EC cloud residues, suggesting that ammonium plays a key role in cloud processes for the

two cloud residue types.
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Organics (e.g., amine and oxalate) have previously been measured in cloud residues
(Sellegri et al., 2003; Sorooshian et al., 2007b; Pratt et al., 2010a). Amine and oxalate
particles with mixtures of inorganic salts could enhance water uptake behavior (Sorooshian
et al., 2008; Wu et al., 2011). Enrichment of TMA (93% by number) in the Amine cloud
residues is expected to promote water uptake in sub- and supersaturated regimes
(Sorooshian et al., 2007a). A total of 3,410 oxalate-containing (m/z, -89HC204") particles
represented 14.4% of the cloud residues by number, which was mainly associated with the
K-rich cloud residues including 2,144 oxalate particles. The oxalate in the K-rich cloud
residues is likely attributed to biomass burning, which facilitates the CCN ability of
biomass-burning particles due to the hygroscopic property of oxalate (Pratt et al., 2010a).
Relative high portions (~30% by number) of oxalate in the metal (Pb, Fe) cloud residues
might be the form of metal oxalate complexes from reactions of in-cloud formation oxalate
with metals (Furukawa and Takahashi, 2011). Oxalate can readily partition into the particle
phase to form amine salts (Pratt et al., 2009). This may result in 33% by number to the

Amine residues containing oxalate.

3.4 Comparison of cloud residues in different air mass sources

Figure 6 displays hourly average unscaled counts and Nf values of nine types of cloud
residues and ambient particles. During 18-19 January, the cloud residues and ambient
particles showed similar chemical characteristics and were dominated by aged EC particles.
A lack of significant variation in the Nf of particle types for this period suggests that the
original particles did not change. Based on a backward trajectory, air masses changed from

northerly on 18 January to southwesterly on 19 January (Figure 2), consistent with variation
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in local wind (Figure 1). Weak wind flow (~ 2.75 m s™') on 19 January favored the
accumulation of particles that originated from northerly air masses on 18 January, with a
remaining high level of PM2s (~ 16 pg m™>). During 16-17 and 21-22 January, the cloud
residues consisted of a high fraction of the Amine type, which significantly differed from
the observation during 18-19 January. Clearly, the observations during 16-17 and 21-22
January were influenced by a strong southwesterly flow with a low value of PM2s (~ 3 ug
m™).

As mentioned above, the Nf of the cloud residue types significantly changed as the air
mass origin varied from northerly to southwesterly. To further investigate the influence of
air mass history, we selected cloud residues that had arrived from a northerly air mass on
19 January and compared these to cloud residues originating from a southwesterly air mass
during the periods of 16-17 and 21-22 January. The detected number of cloud residues for
the northerly and southwesterly air masses are given in Table 1. Note that southwesterly
air mass accompanied by high relative humidity (>90%) (Figure S4) may have triggered
particles activated to CCN prior to their arrival to the sampling site.

The K-rich type was found to contribute 23.9% to the cloud residues in the northerly air
mass, which was significantly lower than its contribution to the southwesterly air mass
(51.5%), as summarized in Table 1. The considerable increase of K-rich cloud residues
suggests a major influence of regional biomass-burning activities. Biomass-burning
emissions from Southeast Asia, including Myanmar, Vietnam, Laos and Thailand, where
abundant fire dots are observed (Figure 2), could have been transported to the sampling
site under a southwesterly air mass (Duncan et al., 2003). In contrast, the aged EC type

represented only 23.7% of the cloud residues under the influence of a southwesterly air
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mass, which was significantly lower than observations for the northerly air mass (59.9%).
This result suggests that the northern air mass has a greater influence on the presence of
aged EC cloud residues.

In addition, an obvious increase in Nf of the Amine type was observed in the
southwesterly air mass (15.1%) compared to the northerly air mass (0.2%). This implies
that the sources or formation mechanisms of amine in cloud residues varied in different air
masses. The southwesterly air mass arrived from as far as the Bay of Bengal and then
travelled through Southeast Asia before reaching South China (Figure 2). The potential gas
amine emissions from ocean (Facchini et al., 2008) and livestock areas (90 million animals,
data was available at the website http://faostat3.fao.org) in Southeast Asia might promote
the enrichment of amine particles. Note that after the activation of amine particles, the
partitioning of the gas amine on cloud droplets may further contribute to the enhanced
Amine cloud residues (Rehbein et al., 2011), especially for air masses delivered via routes
with high relative humidity, as mentioned above (Figure S4). In contrast, northerly air mass
accompanied with dry airstreams may inadequately induce the partitioning of gas amines

into the particle phase (Rehbein et al., 2011).

3.5 Comparison of cloud residues with ambient and interstitial particles

A direct comparison between cloud residues and ambient particles was limited because of
their differences in air mass origins. During the sampling period, the cloud events occurred
once the southwesterly air masses were dominant. Therefore, a comparison between cloud
residues and ambient particles cannot be addressed under the influence of southwesterly

air masses. Here, we chose five hours before and after the beginning of the cloud II period
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in order to compare cloud residues and ambient particles with similar northerly air mass
origins, as discussed in Sect 3.4. The time, detected number and Nf of ambient particles
for this comparison are listed in Table 1. From 10:00 21 January to 13:00 23 January, the
particles were manually switched in an hourly cycle between the CVI and ambient inlets
during the cloud III period to provide information on cloud residues and interstitial particles.
The number and Nf of particle types in the cloud residues and interstitial particles are given
in Table 2. Note that air mass origin shifted from southwesterly to northerly during 22-23
January.

Table 1 shows that the contribution of K-rich particles in cloud residues slightly
decreased relative to ambient particles (23.9% versus 30.7%), which may be due to the
small size distribution of K-rich in ambient particles (Figure S5). A slight increase in the
aged EC cloud residues was attributed to the decreased K-rich cloud residues. The
remaining particle types showed no clear differences between cloud residues and ambient
particles. A comparison of cloud residues and ambient particles may yield information on
particle’s CCN activity due to the in-cloud processing effect. Rather, differences between
cloud residues and interstitial particles can better reflect whether particles become activated
(Zelenyuk et al., 2010). However, few studies have focused on this issue, in part because
interstitial particles show a smaller size than that detected by single-particle mass
spectrometry (Roth et al., 2016). In comparing the cloud residues with the interstitial
particles, a significant change in Nf was found for the aged EC and K-rich type. A higher
Nf of K-rich particles and a lower Nf of EC particles were found for the cloud residues

relative to the interstitial particles (Table 2). Aged EC particles may require very high
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supersaturation to grow into cloud droplets and thus only form interstitial hydrated aerosol
(Hallberg et al., 1994).

Nitrate intensity was found to be enhanced for the cloud residues relative to the ambient
particles, as shown in Figure 7. Drewnick et al. (2007) suggested that, high nitrate, rather
than sulfate, content in pre-existing particles preferentially acted as cloud droplets. Hayden
et al. (2008) argued that a high nitrate content in cloud residues resulted from the uptake
of HNOs gas during the cloud process and estimated that the absorption of HNO3 gas has
the increment of 100-200 nm nitrate cloud residues. However, this is not likely to be the
dominant source of 300-500 nm nitrate cloud residues in this study (Figure S6). The
enhancement of nitrate in cloud residues may be explained by pre-existing particles before
activation, rather than in-cloud nitrate formation. Interestingly, we observed a decrease in
nitrate intensity in cloud residues (Figure 8) and a large size distribution of nitrate-
containing cloud residues compared with the interstitial particles (Figure S7). This result
suggests that particle size, rather than nitrate content, plays a more important role in the
activation of particles into cloud droplets.

Sulfate intensity increased for the aged EC and OC cloud residues, while it decreased
for the Dust, Na-rich cloud residues compared with both ambient and interstitial particles.
Although the in-cloud addition of sulfate occurred by an aqueous Fe-catalyzed reaction
(Harris et al., 2013), sulfate was observed to diminish in the Fe cloud residues relative to
ambient particles. Compared with interstitial particles, sulfate enhanced in the Fe cloud
residues. In a similar comparison of cloud residues with interstitial particles, ambient
particles were observed for the K-rich type. Previous studies also showed that the mass or

number fraction of sulfate in the cloud residues changed between ambient and interstitial
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particles (Pratt et al., 2010a; Hao et al., 2013; Schneider et al., 2016). However, the reason
for this discrepancy remains unclear.

No remarkable change in organic signals between cloud residues and ambient interstitial
particles was obtained for the different particle types. The in-cloud process was an
important pathway for the production of amine particles (Rehbein et al., 2011; Zhang et al.,
2012a). In this study, no significant enhancement of the Amine cloud residues was obtained
relative to the ambient particles (Table 1). Bi et al. (2016) considered that the absence of
amine species in fog residues may be partially affected by droplet evaporation in the GCVI.
We did find a high fraction of the Amine cloud residues when the southwesterly air mass
prevailed, as discussed in Sect 3.4. Therefore, the effect of amine volatilization in the GCVI
on the reduction of the Amine cloud residues is likely an unimportant factor in this study.
A lack of gas-phase amines may be the cause of few amine particles detected in the ambient

particles and cloud residues (Rehbein et al., 2011).

3.6 Comparison with previous studies on cloud/fog residues

Our finding can be compared with previous observations of cloud residues in various
environments including mountain sites (Kamphus et al., 2010; Roth et al., 2016) and
aircraft measurement (Zelenyuk et al., 2010). In these studies, cloud residues showed a
larger size distribution relative to ambient and/or interstitial particles, although in-cloud
processes may modify the size distribution of cloud residues. Cloud residues also exhibited
discrepancies in particle types. The aged EC particles in the stratocumulus cloud residues
were negligible at an altitude of 2-3 km over Alaska (Zelenyuk et al., 2010). In another

study, Pratt et al. (2010a) observed the abundant soot (~19% by number) and biomass
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burning (~43% by number) mix-phase cloud residues at an altitude of 5-7 km over
Wyoming. High Nf of soot (~30%) and biomass burning (~25%) orographic cloud residues
were also observed at a mountain site Schmiicke (937 m a.s.l.) in central Germany (Roth
et al., 2016). However, at Jungfraujoch station (3580 m a.s.l.) in Europe, the K-rich
(biomass burning) particles was only found to contribute 3% of the mix-phase cloud
droplets and the aged EC cloud residue was insignificant (< 1% by number) (Kamphus et
al., 2010). At a ground site in Guangzhou city, aged EC particles contributed up to 67.7%
of fog residues by number (Bi et al., 2016). In this study, aged EC and K-rich particles
dominated the cloud residues. We also found no distinct change in the Nf of aged EC and
K-rich particles in cloud residues relative to ambient particles, which was consistent with
the previous observation of the mix-phase cloud condition (Pratt et al., 2010a). However,
Roth et al. (2016) reported a higher Nf of aged soot particles in orographic cloud residues
rather than ambient particles, but no clear difference between cloud residues and ambient
particles for the biomass burning particle type. This disagreement between studies may
suggest that the ability of particle types to form cloud droplets strongly varies depending

on geographic location rather than cloud type and altitude.

4 Conclusions

This study presented an in situ observation of individual cloud residues, interstitials and
ambient particles at a mountain site in South China. We found that the largest fraction of
cloud residues was the aged EC type (49.3%), followed by K-rich particles (33.9%). The
remarkable change in Nf of the cloud residue types influenced by varied air masses

highlights the important role of regional transportation in the observed cloud residue
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chemistry. Analysis of the mixing state of cloud residues showed that the Dust and Na-rich
cloud residues were highly associated with nitrate. We also conducted comparisons of
cloud residues with ambient and interstitial particles. Nitrate was found to be enhanced in
cloud residues relative to ambient particles but decreased relative to interstitial particles.
However, a larger size distribution of nitrate in the cloud residues was observed relative to
both ambient and interstitial particles. This difference suggests that the nucleating ability
of nitrate-containing particles to form cloud droplets is determined by the content and/or
size of nitrate. Sulfate increased in the aged EC and OC cloud residues while it decreased

in the Dust and Na-rich cloud residues compared with both ambient and interstitial particles.
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644  Table 2. Particle number and number fraction of cloud residues and interstitial particles
645  using a manually switched way during the cloud III period.

Cloud residues Interstitial particles

Types Total Number Number fraction Total Number Number fraction
Aged EC 577 0.370+0.015 560 0.527+0.022
K-rich 775 0.497+0.019 308 0.290+0.017
Amine 81 0.052+0.006 1 0.001+0.001
Dust 21 0.013+0.003 38 0.036+0.006
Fe 39 0.025+0.004 45 0.041+0.006
Pb 4 0.003+0.001 6 0.0060.002
oC 27 0.018+0.003 49 0.046+0.007
Na-rich 27 0.018+0.003 49 0.046+0.007
Other 7 0.004+0.002 7 0.007+0.002

Total 1558 1 1063 1
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Figure 1: The hourly average variations in meteorological conditions (temperature, relative

humidity, visibility, pressure, wind speed and direction) and PMa:s.
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Figure 2: HYSPLIT back trajectories (72 h) for air masses at 1,800 m during the whole
sampling period. The black and red lines refer to northerly and southwesterly air masses,
respectively. The yellow rots represented the fire dots during the study periods. The fire

dots are available at https://earthdata.nasa.gov/.
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Figure 3: Averaged positive and negative mass spectra for the 9 particle types (Aged EC,

K-rich, Amine, Dust, Fe, Pb, Na-rich, OC, and Other) of the 73996 sampled particles

during the whole sampling period. RPA in the vertical axis refers to relative peak area. m/z

in the horizontal axis represents mass-to-charge ratio.
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666  Figure 4: Number fraction of the cloud residual types during the whole sampling period.
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Figure 7: Difference between mass spectra for the cloud residues and ambient particles.
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Figure 8: Difference between mass spectra for the cloud residues and interstitial particles.
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