

**1 In situ chemical measurement of individual cloud residue particles at a
2 mountain site, South China**

**3 Qiniao Lin^{1,2}, Guohua Zhang¹, Long Peng^{1,2}, Xinhui Bi^{1,*}, Ximeng Wang¹, Fred J.
4 Brechtel³, Mei Li⁴, Duohong Chen⁵, Ping'an Peng¹, Guoying Sheng¹, Zhen Zhou⁴**

5

6¹ State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of
7 Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry,
8 Chinese Academy of Sciences, Guangzhou, 510640, PR China

9² University of Chinese Academy of Sciences, Beijing, 100049, PR China

10³ Brechtel Manufacturing Inc., Hayward, 94544, California, USA

11⁴ Atmospheric Environment Institute of Safety and Pollution Control, Jinan University,
12 Guangzhou 510632, PR China

13⁵ State Environmental Protection Key Laboratory of Regional Air Quality Monitoring,
14 Guangdong Environmental Monitoring Center, Guangzhou 510308, PR China

15

16* Correspondence to: Xinhui Bi (bixh@gig.ac.cn)

17Tel.: +86-20-85290195

18

19 **Highlights**

20 1. EC-containing particles comprised the largest fraction of cloud residues (49.3% by
21 number).

22 2. Amine particles represented 0.2% to 15.1% by number of the cloud residues dependent
23 on the air mass history.

24 3. Nitrate intensity increased in the cloud residues relative to the ambient particles but
25 decreased compared with interstitial particles.

26 4. Sulfate intensity increased in the aged EC and OC cloud residues and decreased in the
27 dust and Na-rich cloud residues.

28 **Abstract**

29 To estimate how atmospheric aerosol particles respond to chemical properties of cloud
30 droplets, a ground-based counterflow virtual impactor (GCVI) coupled with a real-time
31 single-particle aerosol mass spectrometer (SPAMS) was used to assess the chemical
32 composition and mixing state of individual cloud residue particles in the Nanling Mountain
33 Range (1,690 m a.s.l.), South China, in January 2016. The cloud residues were classified
34 into nine particle types: Aged elemental carbon (EC), Potassium-rich (K-rich), Amine,
35 Dust, Pb, Fe, Organic carbon (OC), Sodium-rich (Na-rich) and Other. The largest fraction
36 of the cloud residues was the aged EC type (49.3% by number), followed by the K-rich
37 type (33.9% by number). Abundant aged EC cloud residues that internally mixed with
38 inorganic salts were found in air masses from northerly polluted areas. The number fraction
39 (Nf) of the K-rich cloud residues significantly increased within southwesterly air masses
40 from fire activities in Southeast Asia. In addition, the Amine particles represented 0.2% to
41 15.1% by number to the cloud residues when air masses changed from northerly to
42 southwesterly sources. The Dust, Fe, Pb, Na-rich and OC particles had a low contribution
43 (0.5-4.1% by number) to the cloud residues. An analysis of the mixing state of cloud
44 residues showed that the Dust and Na-rich cloud residues were highly associated with
45 nitrate. Sulfate intensity increased in the aged EC and OC cloud residues and decreased in
46 the Dust and Na-rich cloud residues relative to both ambient and interstitial particles. A
47 comparison of cloud residues with interstitial particles indicated that a higher Nf for K-rich
48 particles and a lower Nf for the aged EC particles were found in the cloud residues. Relative
49 to the ambient and interstitial particles, the cloud residues exhibited larger size distributions.
50 To our knowledge, this study is the first report on in situ observation of the chemical

51 composition and mixing state of individual cloud residue particles in China. This study
52 increases our understanding of the impacts of aerosols on cloud droplets in a remote area
53 of China.

54

55 Keywords: GCVI, SPAMS, cloud residues, mixing state, South China

56

57

58 **1 Introduction**

59 Aerosol-cloud interaction influences the thermodynamic and radiation balance of the
60 atmosphere (IPCC, Boucher et al., 2013). Atmospheric aerosol particles can act as cloud
61 condensation nuclei (CCN) and subsequently affect the chemical and physical properties
62 of cloud droplets, which in turn influence global and regional climate change. The ability
63 of atmospheric aerosol particles to act as CCN, particularly in terms of temporal and spatial
64 variation, may usefully improve estimates of climate change. Anthropogenic particles have
65 been observed to be enriched in the cloud droplets at Schmücke (Roth et al., 2016).
66 However, a lesser abundance of anthropogenic particles was found in the mixed-phase
67 clouds during the Cloud and Aerosol Characterization Experiment (CLACE 6) (Kamphus
68 et al., 2010). Therefore, it is crucial to assess how atmospheric aerosol particles contribute
69 and respond to the chemical composition of cloud droplets in different regions.

70 The formation of CCN is dependent on the size and chemical composition of
71 atmospheric aerosol particles at a given supersaturation (McFiggans et al., 2006). A change
72 in the chemical composition of atmospheric aerosol particles during atmospheric aging
73 processes can strongly alter their CCN ability. The presence of hydrophobic surface films
74 lowers the CCN ability of atmospheric aerosols (Andreae and Rosenfeld, 2008). Elemental

75 carbon (EC) particles, normally considered insoluble, show high CCN activity after mixing
76 with sulfuric acid (Zhang et al., 2008). However, sulfate and nitrate, which are generally
77 regarded as soluble materials, were found in particles ranging from high to low
78 hygroscopicity (Herich et al., 2008). Furthermore, several cloud measurements have
79 pointed to a lower Nf of sulfate in cloud droplets relative to ambient or interstitial particles
80 (Twohy and Anderson, 2008; Pratt et al., 2010a). On the contrary, other study have reported
81 a larger Nf of sulfate in cloud droplets (Roth et al., 2016). These discrepancies suggest that
82 the influence of the mixing state of atmospheric aerosol particles on CCN activity remains
83 unclear.

84 The combined technique of a counterflow virtual impactor (CVI) and Aerosol Mass
85 Spectrometer (AMS) or single-particle measurement is widely used to characterize the
86 chemical composition and mixing state of individual cloud/fog droplet residue particles.
87 These studies mainly focus on Europe (Drewnick et al., 2007; Kamphus et al., 2010; Roth
88 et al., 2016; Schneider et al., 2016) and North America (Hayden et al., 2008; Berg et al.,
89 2009; Pratt et al., 2010b; Zelenyuk et al., 2010). Over the past three decades, China has
90 undergone rapid economic growth accompanied by increased aerosol emissions. Scientists
91 have worked to increase our understanding of an emissions inventory and the temporal and
92 spatial variation of atmospheric aerosols in China (Zhang et al., 2012b). However, few
93 studies employ direct observation of the chemical composition and mixing state of
94 cloud/fog droplets. Bi *et al.* (2016) used a ground-counterflow virtual impactor (GCVI)
95 coupled with a real-time single particle aerosol mass spectrometer (SPAMS) to explore the
96 chemical composition and mixing state of single fog residue particles in an urban area of
97 South China at ground level. They found abundant anthropogenic emitted particles

98 including soot or element carbon (EC) in fog droplets. Here, we present a study on the
99 chemical composition and mixing state of individual cloud residue particles at a mountain
100 site. The same experimental methods of Bi et al. (2016) were used in this study on the
101 summit of South China's Nanling mountain region. The size distribution, chemical
102 composition and mixing state of cloud residues during cloud events are discussed.
103 Moreover, the chemical compositions of ambient and interstitial particles were also
104 compared with the cloud residues. The aim of this study is to assess the potential effects of
105 anthropogenic aerosols from regional transportation on cloud formation and to investigate
106 the dominant particle types in cloud droplets at a mountain site in South China.

107

108 **2 Experimental**

109 **2.1 Measurement site**

110 Measurements were carried out January 15-26, 2016. The sampling site was located in the
111 Nanling Background Station ($112^{\circ} 53' 56''$ E, $24^{\circ} 41' 56''$ N, 1,690 m a.s.l.) at the National
112 Air Pollution Monitoring System in South China (Figure S1). This station is 200 km north
113 of the metropolitan city Guangzhou and 350 km north of the South China Sea. This site is
114 also surrounded by a national park forest (273 km^2) where there are hardly any emissions
115 from anthropogenic activities. However, during the winter monsoon period, air pollution
116 from northern China moves south to the southern coastal region and crosses the study
117 region (Lee et al., 2005).

118

119 **2.2 Instrumentation**

120 In this study, a GCVI inlet system (GCVI Model 1205, Brechtel Mfg. Inc.) was used to
121 sample cloud droplets with a diameter greater than 8 μm . The sampled cloud droplets were
122 passed through an evaporation chamber (air flow temperature at 40 °C), where the
123 associated water was removed and the dry residue particles, considered CCN, remained.
124 The particle transmission efficiency of the cut size (8 μm) was 50% (Shingler et al., 2012).
125 The enrichment factor of the particles collected by the GCVI inlet was estimated to be 5.25
126 based on theoretical calculation (Shingler et al., 2012). Ambient particles were collected
127 through an ambient inlet with a cut-off aerodynamic diameter (d_{va}) of 2.5 μm when no
128 cloud events were present. Additionally, interstitial particles were sampled through the
129 ambient inlet during cloud events. The cloud droplet residues, interstitial particles or
130 ambient particles were subsequently analyzed by a suite of aerosol measurement devices,
131 including a SPAMS (Hexin Analytical Instrument Co., Ltd., Guangzhou, China), a
132 scanning mobility particle sizer (SMPS) (MSP Cooperation) and an aethalometer (AE-33,
133 Magee Scientific Inc.). Detailed information and parameter settings regarding the GCVI
134 operation can be found in the work of Bi et al. (2016). Previous studies have found that the
135 average size of cloud droplets in this region was approximately 10 μm , with a
136 corresponding liquid water content of 0.11-0.15 g m^{-3} (Deng et al., 2007). Therefore, it is
137 reasonable to assume that particles larger than 8 μm are cloud droplets. Here, we focus on
138 in situ observations of the size-resolved chemical composition and the mixing state of
139 single cloud residue particles measured by the SPAMS. Meteorological parameters and
140 $\text{PM}_{2.5}$ values at this site were provided by Guangdong Environmental Monitoring Center.
141 A detailed operational principle of the SPAMS has been described elsewhere (Li et al.,
142 2011). Briefly, aerosol particles are drawn into SPAMS through a critical orifice. The

143 particles are focused and aerodynamically sized by two continuous diode Nd:YAG laser
144 beams (532 nm). The particles are subsequently desorbed/ionized by a pulsed laser (266
145 nm) triggered exactly based on the velocity of the specific particle. The positive and
146 negative ions generated are recorded with the corresponding size of each single particle.
147 The velocity is related to vacuum d_{va} using a calibration curve created from the measured
148 velocities of a series of polystyrene latex spheres (Nanosphere Size Standards, Duke
149 Scientific Corp., Palo Alto) with predefined sizes. Particles measured by SPAMS mostly
150 fell within the size range of d_{va} 0.2-2.0 μm (Li et al., 2011). This makes it impossible to
151 effectively detect particles that exceed such a size range (Figure S2).

152

153 **2.3 Definition of cloud events**

154 To reliably identify the presence of cloud events, an upper-limit visibility threshold of 5
155 km and a lower-limit relative humidity (RH) threshold of 95% were set in the GCVI
156 software (Bi et al., 2016). Three long-time cloud events occurred during the periods of
157 16:00 (local time) 15 January - 07:00 17 January (cloud I), 20:00 18 January - 12:00 19
158 January (cloud II) and 17:00 19 January - 13:00 23 January (cloud III), as marked in Figure
159 1. In addition, a cloud event occurred during 14:40 - 15:00 17 January, but we did not
160 complete an analysis due to the short duration of this cloud event. The average values of
161 cloud droplet concentrations integrated by the SMPS were 218 cm^{-3} , 284 cm^{-3} and 272
162 cm^{-3} for cloud I, cloud II and cloud III, respectively (Figure S2). Note that during cloud
163 events, RH was close to 100%, as illustrated in Figure 1. Hazy days associated with low
164 visibility were almost completely excluded in this study due to the low level of $\text{PM}_{2.5}$ (~
165 12.7 $\mu\text{g m}^{-3}$). A rainfall detector of the GCVI system was also used to exclude rainy droplet

166 contamination. When cloud events occurred without precipitation, sampling was
167 automatically triggered by the GCVI control software.

168

169 **2.4 Particle classification**

170 During the study period, a total of 73996 sampled particles including 49322 ambient, 23611
171 cloud residues and 1063 interstitial particles with bipolar mass spectra were chemically
172 analyzed in the size range of d_{va} 0.2-1.9 μm . The sampled particles were first classified
173 into 101 clusters using an Adaptive Resonance Theory neural network (ART-2a) with a
174 vigilance factor of 0.75, a learning rate of 0.05, and 20 iterations (Song et al., 1999). By
175 manually combining similar clusters, aged EC, Potassium-rich (K-rich), Amine, Dust, Fe,
176 Pb, Organic carbon (OC), and Sodium-rich (Na-rich), eight major particle types with
177 distinct chemical patterns were obtained, which represented ~99.9% of the population of
178 the detected particles. The remaining particles were grouped together as “Other”.
179 Assuming that number of individual particles follows Poisson distribution, standard errors
180 for number fraction of particle type were estimated (Pratt et al., 2010a).

181

182 **3 Results and discussion**

183 **3.1 Back trajectories and meteorological conditions**

184 Back air trajectories in this study were calculated using the Hybrid Single Particle
185 Lagrangian Integrated Trajectory (HYSPLIT Model). During the study period, the station
186 was mainly affected by southwesterly or northerly air masses (Figure 2). The southwesterly
187 air masses, accompanied by warm and moist airflows, occurred during 15-17 and 19-22
188 January, which promoted cloud formation (Figure 1). Conversely, the northerly air masses,

189 associated with cool and dry airstreams, occurred during 18 and 23-26 January and led to
190 a decrease in temperature and relative humidity. Meteorological conditions were unstable,
191 with high southwesterly flow ($\sim 6.5 \text{ m s}^{-1}$) during 15-17 and 20-22 January (Figure 1). The
192 level of $\text{PM}_{2.5}$ remained low with a value of approximately $3 \mu\text{g m}^{-3}$ for this time period.
193 A high level of $\text{PM}_{2.5}$ ($\sim 20 \mu\text{g m}^{-3}$) was observed during 18 January when the northerly
194 flow dominated. Similarly, the average $\text{PM}_{2.5}$ value reached $24 \mu\text{g m}^{-3}$ during 24-26
195 January when the local northerly and southwesterly flows occurred alternately. However,
196 the particles still originated from northerly air masses for this period (Figure 2). During 23-
197 24 January, a big freeze associated with a violent northerly flow and a wind speed that
198 exceeded the upper-limit speed ($\sim 12 \text{ m/s}$) of a wind speed sensor resulted in a sharp
199 decrease in temperature (Figure 1).

200

201 **3.2 The chemical characterization of cloud droplet residues**

202 Figure 3 shows the average positive and negative mass spectra of nine particle types. The
203 aged EC particles were identified by EC cluster ions (e.g., $\text{m/z} \pm 12\text{C}^{+/-}$, $\pm 36\text{C}_3^{+/-}$, $\pm 48\text{C}_4^{+/-}$,
204 $\pm 60\text{C}_5^{+/-}$, ...) and a strong sulfate ion signal ($\text{m/z } 97\text{HSO}_4^-$) and some organic markers
205 ($\text{m/z } 27$, 37). The aged EC particle type was the largest fraction (49.3% by number) of the
206 cloud residues (Figure 4). In addition, the number fraction (Nf) of aged EC particles in the
207 cloud residues significantly decreased while size increased (Figure S3). The K-rich
208 particles exhibited the highest peak at $\text{m/z } 39\text{K}^+$, mainly combined with sulfate and nitrate
209 ($\text{m/z } 46\text{NO}_2^-$, -62NO_3^-). The K-rich particles presumably resulted from biomass/biofuel
210 burning (Moffet et al., 2008; Zhang et al., 2013). The K-rich particle type, the second
211 largest contributor, accounted for 33.9% by number of the cloud residues (Figure 4). Aged

212 EC and K-rich particles mainly originated from combustion processes (Andreae and
213 Rosenfeld 2008; Bond et al., 2013). The Nanling mountain sampling site does not contain
214 any sources of anthropogenic emissions; thus, the abundant aged EC and K-rich particles
215 in cloud residues are expected to come from regional transportation.

216 The Amine particles were characterized by related amine ion signals at m/z
217 58C₂H₅NHCH₂⁺, 59N(CH₃)₃⁺ (trimethylamine, TMA) and 86C₅H₁₂N⁺ (Angelino et al.,
218 2001; Moffet et al., 2008; Pratt and Prather, 2010). This particle type also contained sulfuric
219 acid ion signals at m/z -195H(HSO₄)₂⁻, indicative of acidic particles (Rehbein et al., 2011).

220 The Amine particles represented 3.8% by number of the cloud residues (Figure 4), mainly
221 within the size fraction of 0.7-1.9 μm (Figure S3). A recent study also showed a low
222 fraction (<10% by number) of amine species in the cloud residues (Roth et al., 2016). It
223 has been reported that in-cloud/fog processing could enhance amine species (Rehbein et
224 al., 2011; Zhang et al., 2012a). However, this possibility was not supported by the
225 observations of Bi et al. (2016), who did not detect amine-containing particles in the fog
226 residues. In this study, the Nf of the Amine particles varied from 0.2% to 15.1% of the
227 cloud residues dependent on air mass history (see Sect. 3.4).

228 The Dust particles presented significant ions at m/z 40Ca⁺, 56CaO<sup>+/Fe⁺, 96Ca₂O⁺ and -
229 76SiO₃⁻, with an internal mixture of sulfate and nitrate. This type contributed 2.9% by
230 number of the cloud residues (Figure 4). Dust/mineral aerosol accounted for approximately
231 35% of the total aerosol mass in China (Zhang et al., 2012b). Approximately 12% by
232 number of fog contained dust particles at ground level in South China (Bi et al., 2016). At
233 Mt. Taishan in northern China, a high concentration of Ca²⁺ in cloud/fog water was mainly
234 attributed to a sandstorm event (Wang et al., 2011). In this study, a low fraction (2.9% by</sup>

235 number) of dust cloud residue suggests that dust particles did not play a significant role in
236 cloud formation in South China or that they occupied larger CCN (Tang et al., 2016), which
237 cannot be detected by the SPAMS.

238 The Fe and Pb particles had their typical ions at m/z 56Fe⁺ and 208Pb⁺, respectively, and
239 were associated with sulfate and nitrate. The Fe and Pb particles made up 4.1% and 0.5%
240 by number of the cloud residues, respectively (Figure 4). The presence of Fe in the cloud
241 droplets might play an important role in aqueous-phase SO₂ catalytic oxidation in cloud
242 processing (Harris et al., 2014), thus accelerating the sulfate content of Fe-containing
243 particles in cloud processing.

244 The Na-rich particles were mainly composed of ion peaks at m/z 23Na⁺ and 39K⁺ in the
245 positive mass spectra, and inorganic soluble nitrate and sulfate species in the negative mass
246 spectra. Moffet et al. (2008) attributed Na-rich particles to varied sources of industrial
247 emissions or sea salt particles and dry lake beds. The OC particles presented dominant
248 intense OC signals (e.g., m/z 27C₂H₃⁺, 37C₃H⁺, 43C₂H₃O⁺ and 51C₄H₃⁺) and abundant
249 sulfate. The Na-rich and OC types contributed 3.0% and 2.4% by number to the cloud
250 residues, respectively (Figure 4). Internally mixed EC with metal signatures was observed
251 in the Other particles. However, Other particles contributed only 0.1% by number to the
252 cloud residues, which suggests their minor contribution to cloud formation (Figure 4).

253

254 **3.3 Mixing state of secondary species in cloud residues**

255 Particles that coated with inorganic species (e.g., sulfate, nitrate and ammonium) can
256 facilitate water uptake to growth into cloud droplets (Andreae and Rosenfeld, 2008).
257 Number fractions of sulfate were found to be highly related to the K-rich (91%), OC

258 (100%), aged EC (98%), Pb (74%), Fe (93%) and Amine (99%) cloud residues, as shown
259 in Figure 5. Lower number fractions of sulfate were observed in the Na-rich (41%) and
260 Dust (42%) cloud residues. In contrast, nitrate contributed 89% and 88% by number to the
261 Na-rich and Dust cloud residues, respectively. The heterogeneous and/or aqueous
262 chemistry of HNO_3 in the Na-rich and dust particles may lead to the preferential enrichment
263 of nitrate (Li and Shao, 2009). The detection of nitrate in the cloud residues was thought
264 to be the form of ammonium nitrate by estimating the ratio of m/z 30 to m/z 46 in AMS
265 data (Drewnick et al., 2007; Hayden et al., 2008). However, low portions of ammonium in
266 the Na-rich (23% by number) and Dust (15% by number) cloud residues suggest that
267 ammonium nitrate is not a predominant form of nitrate in these cloud residue particle types.
268 Note that the evaporation chamber of the GCVI may lead to a reduction of ammonium
269 nitrate in the cloud residues (Hayden et al., 2008; Prabhakar et al., 2014). However, this
270 effect would be insignificant because the dry carrier air of the GCVI was set at 40 °C. A
271 volatility study found that the temperature to evaporate ammonium nitrate particles reached
272 at least 75 °C (Bi et al., 2015). We found that nitrate accounted for only 46% by number
273 of the aged EC cloud residues, which is significantly less than the contribution of sulfate.
274 Previous studies found that aged EC (soot) fog/cloud residues are mainly internally mixed
275 with sulfate (Pratt et al., 2010a; Harris et al., 2014; Bi et al., 2016). The presence of
276 abundant sulfate in aged EC cloud residues was considered to be a good CCN species
277 before activation, rather than formed by in-cloud processing (Bi et al., 2016; Roth et al.,
278 2016). High portions (75-86% by number) of ammonium were observed for the OC and
279 EC cloud residues, suggesting that ammonium plays a key role in cloud processes for the
280 two cloud residue types.

281 Organics (e.g., amine and oxalate) have previously been measured in cloud residues
282 (Sellegri et al., 2003; Sorooshian et al., 2007b; Pratt et al., 2010a). Amine and oxalate
283 particles with mixtures of inorganic salts could enhance water uptake behavior (Sorooshian
284 et al., 2008; Wu et al., 2011). Enrichment of TMA (93% by number) in the Amine cloud
285 residues is expected to promote water uptake in sub- and supersaturated regimes
286 (Sorooshian et al., 2007a). A total of 3,410 oxalate-containing (m/z , -89HC₂O₄⁻) particles
287 represented 14.4% of the cloud residues by number, which was mainly associated with the
288 K-rich cloud residues including 2,144 oxalate particles. The oxalate in the K-rich cloud
289 residues is likely attributed to biomass burning, which facilitates the CCN ability of
290 biomass-burning particles due to the hygroscopic property of oxalate (Pratt et al., 2010a).
291 Relative high portions (~30% by number) of oxalate in the metal (Pb, Fe) cloud residues
292 might be the form of metal oxalate complexes from reactions of in-cloud formation oxalate
293 with metals (Furukawa and Takahashi, 2011). Oxalate can readily partition into the particle
294 phase to form amine salts (Pratt et al., 2009). This may result in 33% by number to the
295 Amine residues containing oxalate.

296

297 **3.4 Comparison of cloud residues in different air mass sources**

298 Figure 6 displays hourly average unscaled counts and Nf values of nine types of cloud
299 residues and ambient particles. During 18-19 January, the cloud residues and ambient
300 particles showed similar chemical characteristics and were dominated by aged EC particles.
301 A lack of significant variation in the Nf of particle types for this period suggests that the
302 original particles did not change. Based on a backward trajectory, air masses changed from
303 northerly on 18 January to southwesterly on 19 January (Figure 2), consistent with variation

304 in local wind (Figure 1). Weak wind flow ($\sim 2.75 \text{ m s}^{-1}$) on 19 January favored the
305 accumulation of particles that originated from northerly air masses on 18 January, with a
306 remaining high level of $\text{PM}_{2.5}$ ($\sim 16 \mu\text{g m}^{-3}$). During 16-17 and 21-22 January, the cloud
307 residues consisted of a high fraction of the Amine type, which significantly differed from
308 the observation during 18-19 January. Clearly, the observations during 16-17 and 21-22
309 January were influenced by a strong southwesterly flow with a low value of $\text{PM}_{2.5}$ ($\sim 3 \mu\text{g}$
310 m^{-3}).

311 As mentioned above, the Nf of the cloud residue types significantly changed as the air
312 mass origin varied from northerly to southwesterly. To further investigate the influence of
313 air mass history, we selected cloud residues that had arrived from a northerly air mass on
314 19 January and compared these to cloud residues originating from a southwesterly air mass
315 during the periods of 16-17 and 21-22 January. The detected number of cloud residues for
316 the northerly and southwesterly air masses are given in Table 1. Note that southwesterly
317 air mass accompanied by high relative humidity (>90%) (Figure S4) may have triggered
318 particles activated to CCN prior to their arrival to the sampling site.

319 The K-rich type was found to contribute 23.9% to the cloud residues in the northerly air
320 mass, which was significantly lower than its contribution to the southwesterly air mass
321 (51.5%), as summarized in Table 1. The considerable increase of K-rich cloud residues
322 suggests a major influence of regional biomass-burning activities. Biomass-burning
323 emissions from Southeast Asia, including Myanmar, Vietnam, Laos and Thailand, where
324 abundant fire dots are observed (Figure 2), could have been transported to the sampling
325 site under a southwesterly air mass (Duncan et al., 2003). In contrast, the aged EC type
326 represented only 23.7% of the cloud residues under the influence of a southwesterly air

327 mass, which was significantly lower than observations for the northerly air mass (59.9%).

328 This result suggests that the northern air mass has a greater influence on the presence of
329 aged EC cloud residues.

330 In addition, an obvious increase in Nf of the Amine type was observed in the
331 southwesterly air mass (15.1%) compared to the northerly air mass (0.2%). This implies
332 that the sources or formation mechanisms of amine in cloud residues varied in different air
333 masses. The southwesterly air mass arrived from as far as the Bay of Bengal and then
334 travelled through Southeast Asia before reaching South China (Figure 2). The potential gas
335 amine emissions from ocean (Facchini et al., 2008) and livestock areas (90 million animals,
336 data was available at the website <http://faostat3.fao.org>) in Southeast Asia might promote
337 the enrichment of amine particles. Note that after the activation of amine particles, the
338 partitioning of the gas amine on cloud droplets may further contribute to the enhanced
339 Amine cloud residues (Rehbein et al., 2011), especially for air masses delivered via routes
340 with high relative humidity, as mentioned above (Figure S4). In contrast, northerly air mass
341 accompanied with dry airstreams may inadequately induce the partitioning of gas amines
342 into the particle phase (Rehbein et al., 2011).

343

344 **3.5 Comparison of cloud residues with ambient and interstitial particles**

345 A direct comparison between cloud residues and ambient particles was limited because of
346 their differences in air mass origins. During the sampling period, the cloud events occurred
347 once the southwesterly air masses were dominant. Therefore, a comparison between cloud
348 residues and ambient particles cannot be addressed under the influence of southwesterly
349 air masses. Here, we chose five hours before and after the beginning of the cloud II period

350 in order to compare cloud residues and ambient particles with similar northerly air mass
351 origins, as discussed in Sect 3.4. The time, detected number and Nf of ambient particles
352 for this comparison are listed in Table 1. From 10:00 21 January to 13:00 23 January, the
353 particles were manually switched in an hourly cycle between the CVI and ambient inlets
354 during the cloud III period to provide information on cloud residues and interstitial particles.
355 The number and Nf of particle types in the cloud residues and interstitial particles are given
356 in Table 2. Note that air mass origin shifted from southwesterly to northerly during 22-23
357 January.

358 Table 1 shows that the contribution of K-rich particles in cloud residues slightly
359 decreased relative to ambient particles (23.9% versus 30.7%), which may be due to the
360 small size distribution of K-rich in ambient particles (Figure S5). A slight increase in the
361 aged EC cloud residues was attributed to the decreased K-rich cloud residues. The
362 remaining particle types showed no clear differences between cloud residues and ambient
363 particles. A comparison of cloud residues and ambient particles may yield information on
364 particle's CCN activity due to the in-cloud processing effect. Rather, differences between
365 cloud residues and interstitial particles can better reflect whether particles become activated
366 (Zelenyuk et al., 2010). However, few studies have focused on this issue, in part because
367 interstitial particles show a smaller size than that detected by single-particle mass
368 spectrometry (Roth et al., 2016). In comparing the cloud residues with the interstitial
369 particles, a significant change in Nf was found for the aged EC and K-rich type. A higher
370 Nf of K-rich particles and a lower Nf of EC particles were found for the cloud residues
371 relative to the interstitial particles (Table 2). Aged EC particles may require very high

372 supersaturation to grow into cloud droplets and thus only form interstitial hydrated aerosol
373 (Hallberg et al., 1994).

374 Nitrate intensity was found to be enhanced for the cloud residues relative to the ambient
375 particles, as shown in Figure 7. Drewnick et al. (2007) suggested that, high nitrate, rather
376 than sulfate, content in pre-existing particles preferentially acted as cloud droplets. Hayden
377 et al. (2008) argued that a high nitrate content in cloud residues resulted from the uptake
378 of HNO_3 gas during the cloud process and estimated that the absorption of HNO_3 gas has
379 the increment of 100-200 nm nitrate cloud residues. However, this is not likely to be the
380 dominant source of 300-500 nm nitrate cloud residues in this study (Figure S6). The
381 enhancement of nitrate in cloud residues may be explained by pre-existing particles before
382 activation, rather than in-cloud nitrate formation. Interestingly, we observed a decrease in
383 nitrate intensity in cloud residues (Figure 8) and a large size distribution of nitrate-
384 containing cloud residues compared with the interstitial particles (Figure S7). This result
385 suggests that particle size, rather than nitrate content, plays a more important role in the
386 activation of particles into cloud droplets.

387 Sulfate intensity increased for the aged EC and OC cloud residues, while it decreased
388 for the Dust, Na-rich cloud residues compared with both ambient and interstitial particles.
389 Although the in-cloud addition of sulfate occurred by an aqueous Fe-catalyzed reaction
390 (Harris et al., 2013), sulfate was observed to diminish in the Fe cloud residues relative to
391 ambient particles. Compared with interstitial particles, sulfate enhanced in the Fe cloud
392 residues. In a similar comparison of cloud residues with interstitial particles, ambient
393 particles were observed for the K-rich type. Previous studies also showed that the mass or
394 number fraction of sulfate in the cloud residues changed between ambient and interstitial

395 particles (Pratt et al., 2010a; Hao et al., 2013; Schneider et al., 2016). However, the reason
396 for this discrepancy remains unclear.

397 No remarkable change in organic signals between cloud residues and ambient interstitial
398 particles was obtained for the different particle types. The in-cloud process was an
399 important pathway for the production of amine particles (Rehbein et al., 2011; Zhang et al.,
400 2012a). In this study, no significant enhancement of the Amine cloud residues was obtained
401 relative to the ambient particles (Table 1). Bi et al. (2016) considered that the absence of
402 amine species in fog residues may be partially affected by droplet evaporation in the GCVI.
403 We did find a high fraction of the Amine cloud residues when the southwesterly air mass
404 prevailed, as discussed in Sect 3.4. Therefore, the effect of amine volatilization in the GCVI
405 on the reduction of the Amine cloud residues is likely an unimportant factor in this study.
406 A lack of gas-phase amines may be the cause of few amine particles detected in the ambient
407 particles and cloud residues (Rehbein et al., 2011).

408

409 **3.6 Comparison with previous studies on cloud/fog residues**

410 Our finding can be compared with previous observations of cloud residues in various
411 environments including mountain sites (Kamphus et al., 2010; Roth et al., 2016) and
412 aircraft measurement (Zelenyuk et al., 2010). In these studies, cloud residues showed a
413 larger size distribution relative to ambient and/or interstitial particles, although in-cloud
414 processes may modify the size distribution of cloud residues. Cloud residues also exhibited
415 discrepancies in particle types. The aged EC particles in the stratocumulus cloud residues
416 were negligible at an altitude of 2-3 km over Alaska (Zelenyuk et al., 2010). In another
417 study, Pratt et al. (2010a) observed the abundant soot (~19% by number) and biomass

418 burning (~43% by number) mix-phase cloud residues at an altitude of 5-7 km over
419 Wyoming. High Nf of soot (~30%) and biomass burning (~25%) orographic cloud residues
420 were also observed at a mountain site Schmücke (937 m a.s.l.) in central Germany (Roth
421 et al., 2016). However, at Jungfraujoch station (3580 m a.s.l.) in Europe, the K-rich
422 (biomass burning) particles was only found to contribute 3% of the mix-phase cloud
423 droplets and the aged EC cloud residue was insignificant (< 1% by number) (Kamphus et
424 al., 2010). At a ground site in Guangzhou city, aged EC particles contributed up to 67.7%
425 of fog residues by number (Bi et al., 2016). In this study, aged EC and K-rich particles
426 dominated the cloud residues. We also found no distinct change in the Nf of aged EC and
427 K-rich particles in cloud residues relative to ambient particles, which was consistent with
428 the previous observation of the mix-phase cloud condition (Pratt et al., 2010a). However,
429 Roth et al. (2016) reported a higher Nf of aged soot particles in orographic cloud residues
430 rather than ambient particles, but no clear difference between cloud residues and ambient
431 particles for the biomass burning particle type. This disagreement between studies may
432 suggest that the ability of particle types to form cloud droplets strongly varies depending
433 on geographic location rather than cloud type and altitude.

434

435 **4 Conclusions**

436 This study presented an in situ observation of individual cloud residues, interstitials and
437 ambient particles at a mountain site in South China. We found that the largest fraction of
438 cloud residues was the aged EC type (49.3%), followed by K-rich particles (33.9%). The
439 remarkable change in Nf of the cloud residue types influenced by varied air masses
440 highlights the important role of regional transportation in the observed cloud residue

441 chemistry. Analysis of the mixing state of cloud residues showed that the Dust and Na-rich
442 cloud residues were highly associated with nitrate. We also conducted comparisons of
443 cloud residues with ambient and interstitial particles. Nitrate was found to be enhanced in
444 cloud residues relative to ambient particles but decreased relative to interstitial particles.
445 However, a larger size distribution of nitrate in the cloud residues was observed relative to
446 both ambient and interstitial particles. This difference suggests that the nucleating ability
447 of nitrate-containing particles to form cloud droplets is determined by the content and/or
448 size of nitrate. Sulfate increased in the aged EC and OC cloud residues while it decreased
449 in the Dust and Na-rich cloud residues compared with both ambient and interstitial particles.
450

451 **Acknowledgments**

452 The authors thank Ji Ou from Shaoguan city Environmental Monitoring Center for the
453 support at the observed site. We also acknowledge the NOAA Air Resources Laboratory
454 (ARL) for the provision of the HYSPLIT transport and dispersion model and/or READY
455 website (<http://ready.arl.noaa.gov>) used in this publication. This work was supported by
456 the National Nature Science Foundation of China (No. 91544101 and 41405131), the
457 “Strategic Priority Research Program (B)” of the CAS (XDB05020205), and the
458 Foundation for Leading Talents of the Guangdong Province Government. All the data can
459 be obtained by contacting the corresponding author.
460

461 **References**

462 Andreae, M. O., and Rosenfeld, D.: Aerosol-cloud-precipitation interactions. Part 1. The
463 nature and sources of cloud-active aerosols, *Earth-Sci. Rev.*, 89, 13-41, doi:
464 10.1016/j.earscirev.2008.03.001, 2008.

465 Angelino, S., Suess, D. T., and Prather, K. A.: Formation of aerosol particles from reactions
466 of secondary and tertiary alkylamines: Characterization by aerosol time-of-flight mass
467 spectrometry, *Environ. Sci. Technol.*, 35, 3130-3138, doi: 10.1021/es0015444, 2001.

468 Bi, X., Dai, S., Zhang, G., Qiu, N., Li, M., Wang, X., Chen, D., Peng, P. a., Sheng, G., Fu,
469 J., and Zhou, Z.: Real-time and single-particle volatility of elemental carbon-containing
470 particles in the urban area of Pearl River Delta region, China, *Atmos. Environ.*, 118, 194-
471 202, doi: 10.1016/j.atmosenv.2015.08.012, 2015.

472 Bi, X., Lin, Q., Peng, L., Zhang, G., Wang, X., Brechtel, F. J., Chen, D., Li, M., Peng, P.
473 a., Sheng, G., and Zhou, Z.: In situ detection of the chemistry of individual fog droplet
474 residues in the Pearl River Delta region, China, *J. Geophys. Res. Atmos.*, 121(15), 9105-
475 9116, doi:10.1002/2016jd024886, 2016.

476 Berg, L.K., Berkowitz, C.M., Hubbe, J.M., Ogren, J.A., Hostetler, C.A., Ferrare, R.A., Hair,
477 J.W., Dubey, M.K., Mazzoleni, C. and Andrews, E.: Overview of the cumulus humilis
478 aerosol processing study. *B. Am. Meteorol. Soc.* 90, 1653-1667,
479 <http://dx.doi.org/10.1175/2009BAMS2760.1>, 2009.

480 Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. J.,
481 Flanner, M. G., Ghan, S., Kärcher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, P. K.,
482 Sarofim, M. C., Schultz, M. G., Schulz, M., Venkataraman, C., Zhang, H., Zhang, S.,
483 Bellouin, N., Guttikunda, S. K., Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont,

484 Z., Lohmann, U., Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G., and Zender,
485 C. S.: Bounding the role of black carbon in the climate system: A scientific assessment,
486 J. Geophys. Res. Atmos., 118, 5380-5552, doi:10.1002/jgrd.50171, 2013.

487 Boucher, O., D. Randall, P. Artaxo, C. Bretherton, G. Feingold, P. Forster, V.-M.
488 Kerminen, Y. Kondo, H. Liao, U. Lohmann, P. Rasch, S.K. Satheesh, S. Sherwood, B.
489 Stevens and X.Y. Zhang: Clouds and Aerosols. In: Climate Change 2013: The Physical
490 Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the
491 Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M.
492 Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)].
493 Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
494 2013

495 Drewnick, F., Schneider, J., Hings, S. S., Hock, N., Noone, K., Targino, A., Weimer, S.,
496 and Borrmann, S.: Measurement of ambient, interstitial, and residual aerosol particles
497 on a mountaintop site in central Sweden using an aerosol mass spectrometer and a CVI,
498 J. Atmos. Chem., 56, 1-20, doi:10.1007/s10874-006-9036-8, 2007.

499 Deng X, Wu D, Shi Y, et al. Comprehensive analysis of the macro-and micro-physical
500 characteristics of dense fog in the area south of the Nanling Mountains (in Chinese),
501 J.Trop. Meteorol., 23(5): 424-434, 2007.

502 Duncan, B. N., Martin, R. V., Staudt, A. C., Yevich, R., & Logan, J. A.: Interannual and
503 seasonal variability of biomass burning emissions constrained by satellite observations,
504 J. Geophys. Res. Atmos., 108(D2), doi:10.1029/2002jd002378, 2003.

505 Facchini, M. C., Decesari, S., Rinaldi, M., Carbone, C., Finessi, E., Mircea, M., Fuzzi, S.,
506 Moretti, F., Tagliavini, E., and Ceburnis, D.: Important source of marine secondary

507 organic aerosol from biogenic amines, Environ. Sci. Technol., 42, 9116-9121, doi:
508 10.1021/es8018385, 2008.

509 Furukawa, T., and Takahashi, Y.: Oxalate metal complexes in aerosol particles:
510 implications for the hygroscopicity of oxalate-containing particles, Atmos. Chem. Phys.,
511 11, 4289-4301, doi:10.5194/acp-11-4289-2011, 2011.

512 Hallberg, A., Ogren, J. A., Noone, K. J., Okada, K., Heintzenberg, J., & Svenningsson, I.
513 B.: The influence of aerosol particle composition on cloud droplet formation, J. Atmos.
514 Chem., 19, 153-171, doi: 10.1007/978-94-011-0313-8_8, 1994.

515 Hao, L., Romakkaniemi, S., Kortelainen, A., Jaatinen, A., Portin, H., Miettinen, P.,
516 Komppula, M., Leskinen, A., Virtanen, A., Smith, J. N., Sueper, D., Worsnop, D. R.,
517 Lehtinen, K. E., and Laaksonen, A.: Aerosol chemical composition in cloud events by
518 high resolution time-of-flight aerosol mass spectrometry, Environ. Sci. Technol., 47,
519 2645-2653, doi:10.1021/es302889w, 2013.

520 Harris, E., Sinha, B., van Pinxteren, D., Tilgner, A., Fomba, K. W., Schneider, J., Roth, A.,
521 Gnauk, T., Fahlbusch, B., and Mertes, S.: Enhanced role of transition metal ion catalysis
522 during in-cloud oxidation of SO₂, Science, 340, 727-730, doi:10.1126/science.1230911,
523 2013.

524 Harris, E., Sinha, B., van Pinxteren, D., Schneider, J., Poulain, L., Collett, J., D'Anna, B.,
525 Fahlbusch, B., Foley, S., Fomba, K. W., George, C., Gnauk, T., Henning, S., Lee, T.,
526 Mertes, S., Roth, A., Stratmann, F., Borrmann, S., Hoppe, P., and Herrmann, H.: In-
527 cloud sulfate addition to single particles resolved with sulfur isotope analysis during
528 HCCT-2010, Atmos. Chem. Phys., 14, 4219-4235, doi:10.5194/acp-14-4219-2014,
529 2014.

530 Hayden, K. L., Macdonald, A. M., Gong, W., Toom-Sauntry, D., Anlauf, K. G., Leithead,
531 A., Li, S. M., Leaitch, W. R., and Noone, K.: Cloud processing of nitrate, *J. Geophys.*
532 *Res. Atmos.*, 113(D18), doi:10.1029/2007jd009732, 2008.

533 Herich, H., Kammermann, L., Gysel, M., Weingartner, E., Baltensperger, U., Lohmann,
534 U., and Cziczo, D. J.: In situ determination of atmospheric aerosol composition as a
535 function of hygroscopic growth, *J. Geophys. Res. Atmos.*, 113(D16),
536 doi:10.1029/2008jd009954, 2008.

537 Kamphus, M., Ettner-Mahl, M., Klimach, T., Drewnick, F., Keller, L., Cziczo, D. J.,
538 Mertes, S., Borrmann, S., and Curtius, J.: Chemical composition of ambient aerosol, ice
539 residues and cloud droplet residues in mixed-phase clouds: single particle analysis
540 during the Cloud and Aerosol Characterization Experiment (CLACE 6), *Atmos. Chem.*
541 *Phys.*, 10, 8077-8095, doi:10.5194/acp-10-8077-2010, 2010.

542 Lee, C. S. L., Li, X., Zhang, G., Peng, X., and Zhang, L.: Biomonitoring of trace metals in
543 the atmosphere using moss (*Hypnum plumaeforme*) in the Nanling Mountains and the
544 Pearl River Delta, Southern China. *Atmos. Environ.*, 39(3), 397-407, 2005.

545 Li, L., Huang, Z., Dong, J., Li, M., Gao, W., Nian, H., Fu, Z., Zhang, G., Bi, X., and Cheng,
546 P.: Real time bipolar time-of-flight mass spectrometer for analyzing single aerosol
547 particles, *Int. J. Mass Spectrom.*, 303, 118-124,
548 doi:<http://dx.doi.org/10.1016/j.ijms.2011.01.017>, 2011.

549 Li, W., and Shao, L.: Observation of nitrate coatings on atmospheric mineral dust particles,
550 *Atmos. Chem. Phys.*, 9, 1863-1871, doi:10.5194/acp-9-1863-2009, 2009.

551 McFiggans, G., Artaxo, P., Baltensperger, U., Coe, H., Facchini, M. C., Feingold, G., Fuzzi,
552 S., Gysel, M., Laaksonen, A., and Lohmann, U.: The effect of physical and chemical

553 aerosol properties on warm cloud droplet activation, *Atmos. Chem. Phys.*, 6, 2593-2649,
554 doi:10.5194/acp-6-2593-2006, 2006.

555 Moffet, R., Foy, B. d., Molina, L. a., Molina, M., and Prather, K.: Measurement of ambient
556 aerosols in northern Mexico City by single particle mass spectrometry, *Atmos. Chem.*
557 *Phys.*, 8, 4499-4516, doi:10.5194/acp-8-4499-2008, 2008.

558 Prabhakar, G., Ervens, B., Wang, Z., Maudlin, L. C., Coggon, M. M., Jonsson, H. H.,
559 Seinfeld, J. H., and Sorooshian, A.: Sources of nitrate in stratocumulus cloud water:
560 Airborne measurements during the 2011 E-PEACE and 2013 NiCE studies, *Atmos.*
561 *Environ.*, 97, 166-173, doi:10.1016/j.atmosenv.2014.08.019, 2014.

562 Pratt, K. A., Hatch, L. E., and Prather, K. A.: Seasonal volatility dependence of ambient
563 particle phase amines, *Environ. Sci. Technol.*, 43, 5276-5281, doi:10.1021/es803189n,
564 2009.

565 Pratt, K. A., Heymsfield, A. J., Twohy, C. H., Murphy, S. M., DeMott, P. J., Hudson, J. G.,
566 Subramanian, R., Wang, Z., Seinfeld, J. H., and Prather, K. A.: In Situ Chemical
567 Characterization of Aged Biomass-Burning Aerosols Impacting Cold Wave Clouds, *J.*
568 *Atmos. Sci.*, 67, 2451-2468, doi:10.1175/2010jas3330.1, 2010a.

569 Pratt, K. A., and Prather, K. A.: Aircraft measurements of vertical profiles of aerosol
570 mixing states, *J. Geophys. Res. Atmos.*, 115(D11), doi: 10.1029/2009jd013150, 2010.

571 Pratt, K. A., Twohy, C. H., Murphy, S. M., Moffet, R. C., Heymsfield, A. J., Gaston, C. J.,
572 DeMott, P. J., Field, P. R., Henn, T. R., Rogers, D. C., Gilles, M. K., Seinfeld, J. H., and
573 Prather, K. A.: Observation of playa salts as nuclei in orographic wave clouds, *J.*
574 *Geophys. Res. Atmos.*, 115(D15), doi:10.1029/2009JD013606, 2010b.

575 Rehbein, P. J., Jeong, C. H., McGuire, M. L., Yao, X., Corbin, J. C., and Evans, G. J.:
576 Cloud and fog processing enhanced gas-to-particle partitioning of trimethylamine,
577 Environ. Sci. Technol., 45, 4346-4352, doi:10.1021/es1042113, 2011.

578 Roth, A., Schneider, J., Klimach, T., Mertes, S., van Pinxteren, D., Herrmann, H., and
579 Borrmann, S.: Aerosol properties, source identification, and cloud processing in
580 orographic clouds measured by single particle mass spectrometry on a central European
581 mountain site during HCCT-2010, Atmos. Chem. Phys., 16, 505-524, doi:10.5194/acp-
582 16-505-2016, 2016.

583 Schneider, J., Mertes, S., van Pinxteren, D., Herrmann, H., and Borrmann, S.: Uptake of
584 nitric acid, ammonia, and organics in orographic clouds: Mass spectrometric analyses of
585 droplet residual and interstitial aerosol particles, Atmos. Chem. Phys. Discuss., 1-38,
586 doi:10.5194/acp-2016-835, 2016.

587 Sellegrí, K., Laj, P., Marinoni, A., Dupuy, R., Legrand, M., and Preunkert, S.: Contribution
588 of gaseous and particulate species to droplet solute composition at the Puy de Dôme,
589 France, Atmos. Chem. Phys., 3, 1509-1522, doi:10.5194/acp-3-1509-2003, 2003.

590 Shingler, T., Dey, S., Sorooshian, A., Brechtel, F. J., Wang, Z., Metcalf, A., Coggon, M.,
591 Mülmenstädt, J., Russell, L. M., Jonsson, H. H., and Seinfeld, J. H.: Characterisation and
592 airborne deployment of a new counterflow virtual impactor inlet, Atmos. Meas. Tech.,
593 5, 1259-1269, doi:10.5194/amt-5-1259-2012, 2012.

594 Song, X.H., Hopke, P. K., Fergenson, D. P., and Prather, K. A.: Classification of single
595 particles analyzed by ATOFMS using an artificial neural network, ART-2A, Anal.
596 Chem., 71, 860-865, doi:10.1021/ac9809682, 1999.

597 Sorooshian, A., Lu, M.-L., Brechtel, F. J., Jonsson, H., Feingold, G., Flagan, R. C., and
598 Seinfeld, J. H.: On the source of organic acid aerosol layers above clouds, *Environ. Sci.*
599 *Technol.*, 41, 4647-4654, doi: 10.1021/es0630442, 2007a.

600 Sorooshian, A., Ng, N. L., Chan, A. W. H., Feingold, G., Flagan, R. C., and Seinfeld, J. H.:
601 Particulate organic acids and overall water-soluble aerosol composition measurements
602 from the 2006 Gulf of Mexico Atmospheric Composition and Climate Study
603 (GoMACCS), *J. Geophys. Res. Atmos.*, 112(D13), doi:10.1029/2007JD008537, 2007b.

604 Sorooshian, A., Murphy, S., Hersey, S., Gates, H., Padro, L., Nenes, A., Brechtel, F.,
605 Jonsson, H., Flagan, R., and Seinfeld, J.: Comprehensive airborne characterization of
606 aerosol from a major bovine source, *Atmos. Chem. Phys.*, 8, 5489-5520, doi:
607 <http://dx.doi.org/10.5194/acp-8-5489-2008>, 2008.

608 Tang, M., Cziczo, D. J., and Grassian, V. H.: Interactions of Water with Mineral Dust
609 Aerosol: Water Adsorption, Hygroscopicity, Cloud Condensation, and Ice Nucleation,
610 *Chem. Rev.*, doi:10.1021/acs.chemrev.5b00529, 2016.

611 Twohy C.H. and Anderson J. R.: Droplet nuclei in non-precipitating clouds: composition
612 and size matter. *Environ. Res. Lett.*, 3, 045002, doi:10.1088/1748-9326/3/4/045002,
613 2008.

614 Wang, Y., Guo, J., Wang, T., Ding, A., Gao, J., Zhou, Y., Collett, J. L., and Wang, W.:
615 Influence of regional pollution and sandstorms on the chemical composition of cloud/fog
616 at the summit of Mt. Taishan in northern China, *Atmos. Res.*, 99, 434-442,
617 doi:10.1016/j.atmosres.2010.11.010, 2011.

618 Wu, Z., Nowak, A., Poulain, L., Herrmann, H., and Wiedensohler, A.: Hygroscopic
619 behavior of atmospherically relevant water-soluble carboxylic salts and their influence

620 on the water uptake of ammonium sulfate, *Atmos. Chem. Phys.*, 11, 12617-12626,
621 doi:10.5194/acp-11-12617-2011, 2011.

622 Zelenyuk, A., Imre, D., Earle, M., Easter, R., Korolev, A., Leaitch, R., Liu, P., Macdonald,
623 A. M., Ovchinnikov, M., and Strapp, W.: In Situ Characterization of Cloud
624 Condensation Nuclei, Interstitial, and Background Particles Using the Single Particle
625 Mass Spectrometer, SPLAT II†, *Anal. Chem.*, 82, 7943-7951, doi:10.1021/ac1013892,
626 2010.

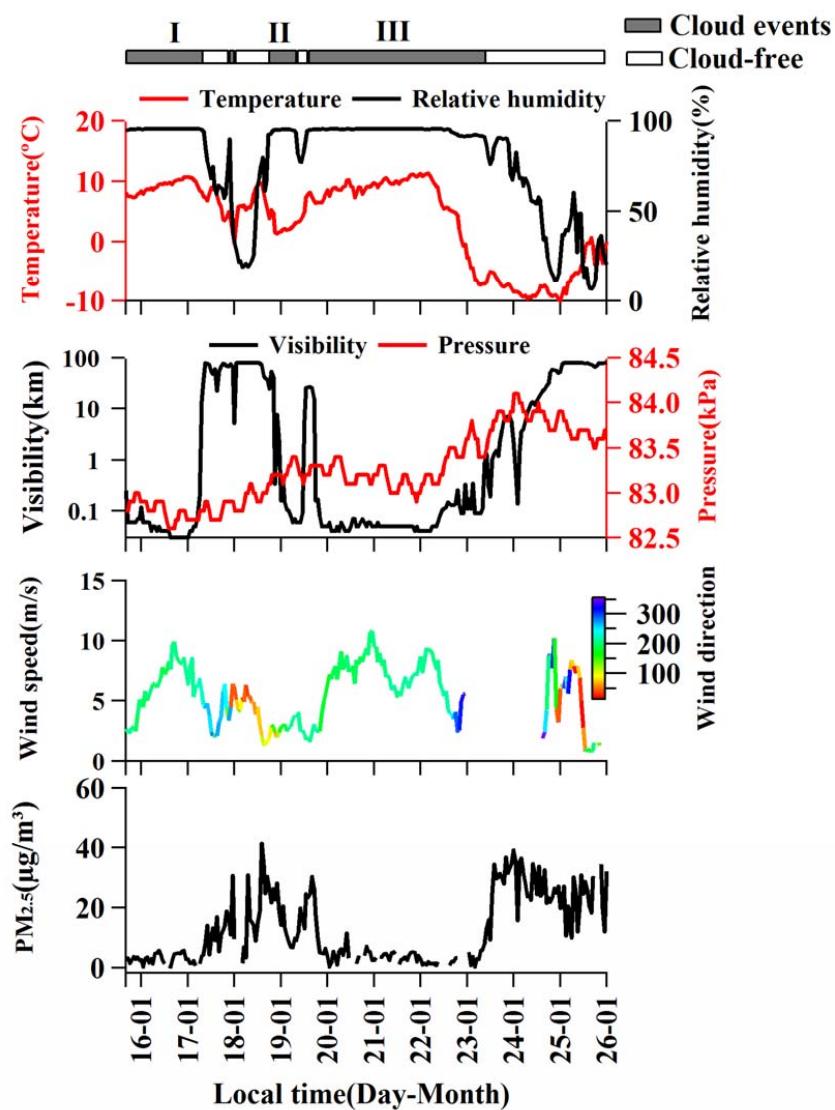
627 Zhang, Khalizov, A. F., Pagels, J., Zhang, D., Xue, H., and McMurry, P. H.: Variability in
628 morphology, hygroscopicity, and optical properties of soot aerosols during atmospheric
629 processing, *P. N. A. S.*, 105, 10291-10296, doi:10.1073/pnas.0804860105, 2008.

630 Zhang, G., Bi, X., Chan, L. Y., Li, L., Wang, X., Feng, J., Sheng, G., Fu, J., Li, M., and
631 Zhou, Z.: Enhanced trimethylamine-containing particles during fog events detected by
632 single particle aerosol mass spectrometry in urban Guangzhou, China, *Atmos. Environ.*,
633 55, 121-126, doi:10.1016/j.atmosenv.2012.03.038, 2012a.

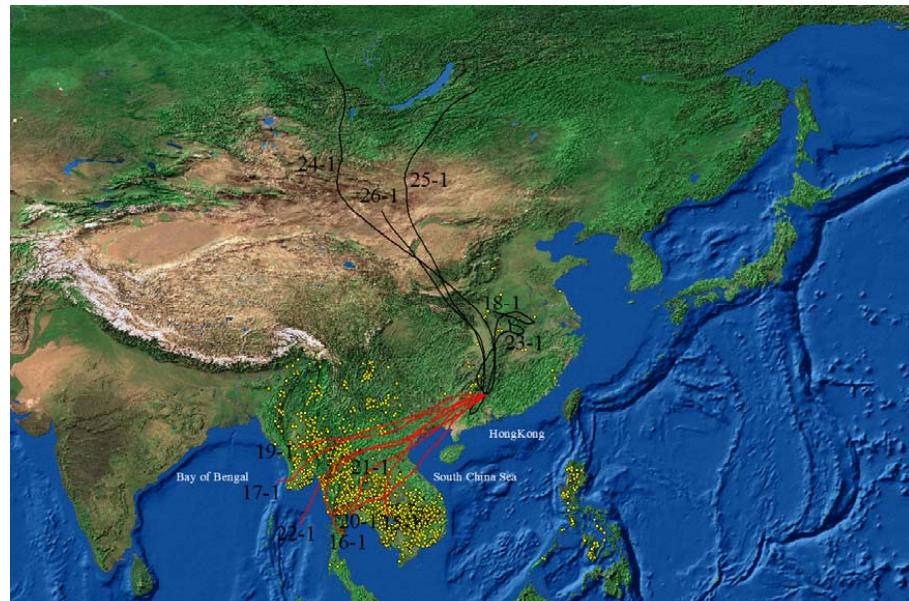
634 Zhang, G., Bi, X., Li, L., Chan, L. Y., Li, M., Wang, X., Sheng, G., Fu, J., and Zhou, Z.:
635 Mixing state of individual submicron carbon-containing particles during spring and fall
636 seasons in urban Guangzhou, China: a case study, *Atmos. Chem. Phys.*, 13, 4723-4735,
637 doi:10.5194/acp-13-4723-2013, 2013.

638 Zhang, X., Wang, Y., Niu, T., Zhang, X., Gong, S., Zhang, Y., and Sun, J.: Atmospheric
639 aerosol compositions in China: spatial/temporal variability, chemical signature, regional
640 haze distribution and comparisons with global aerosols, *Atmos. Chem. Phys.*, 12, 779-
641 799, doi:10.5194/acp-12-779-2012, 2012b.

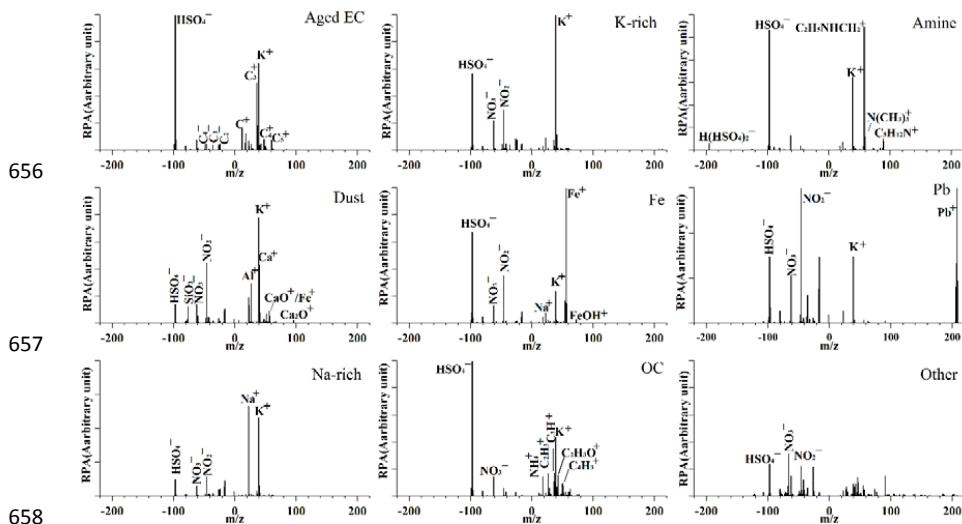
642 Table 1. Time, sampled particles and number fraction of ambient particles and cloud residues during various air masses.


types	Total Number	Number fraction	Total Number	Number fraction	Total Number	Number fraction	Cloud residues (Southwesterly)	Cloud residues (Northerly)	Ambient particles (Northerly)
							16-01-2016, 12:00; 21-01-2016, 00:00	18-01-2016, 20:20	18-01-2016, 15:00
Start							17-01-2016, 00:00; 22-01-2016, 00:00	19-01-2016, 01:00	18-01-2016, 20:00
End									
Aged EC	423	0.237±0.011	2417	0.599±0.012	1491	0.538±0.014			
K-rich	918	0.515±0.017	962	0.239±0.008	852	0.307±0.011			
Amine	269	0.151±0.009	6	0.002±0.001	5	0.002±0.001			
Dust	55	0.030±0.004	80	0.020±0.002	65	0.024±0.003			
Fe	42	0.024±0.004	223	0.055±0.004	125	0.045±0.004			
Pb	6	0.003±0.001	26	0.006±0.001	23	0.008±0.002			
OC	17	0.010±0.002	184	0.046±0.003	111	0.040±0.004			
Na-rich	42	0.024±0.004	134	0.033±0.003	98	0.035±0.004			
Other	12	0.006±0.002	0	0.000	4	0.001±0.001			
Total	1784	1.000	4032	1.000	2774	1.000			

644 Table 2. Particle number and number fraction of cloud residues and interstitial particles
645 using a manually switched way during the cloud III period.


Types	Cloud residues		Interstitial particles	
	Total Number	Number fraction	Total Number	Number fraction
Aged EC	577	0.370±0.015	560	0.527±0.022
K-rich	775	0.497±0.019	308	0.290±0.017
Amine	81	0.052±0.006	1	0.001±0.001
Dust	21	0.013±0.003	38	0.036±0.006
Fe	39	0.025±0.004	45	0.041±0.006
Pb	4	0.003±0.001	6	0.006±0.002
OC	27	0.018±0.003	49	0.046±0.007
Na-rich	27	0.018±0.003	49	0.046±0.007
Other	7	0.004±0.002	7	0.007±0.002
Total	1558	1	1063	1

646

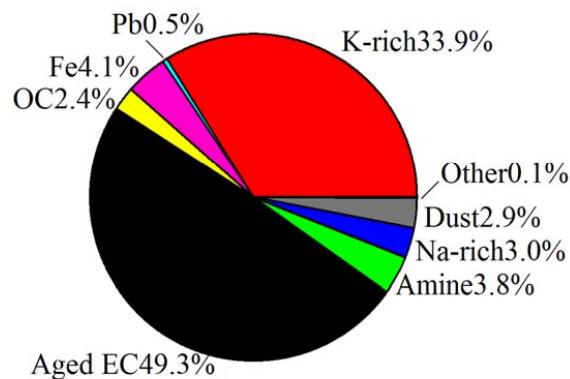


647

648 Figure 1: The hourly average variations in meteorological conditions (temperature, relative
649 humidity, visibility, pressure, wind speed and direction) and PM_{2.5}.

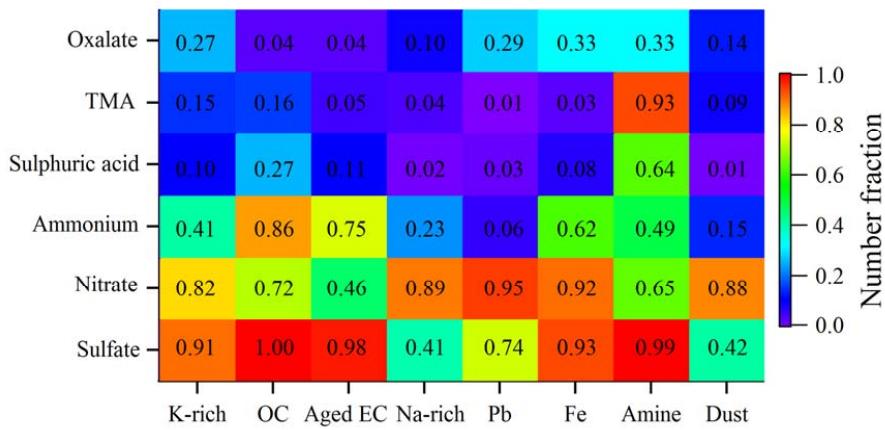
650
651
652 Figure 2: HYSPLIT back trajectories (72 h) for air masses at 1,800 m during the whole
653 sampling period. The black and red lines refer to northerly and southwesterly air masses,
654 respectively. The yellow dots represented the fire dots during the study periods. The fire
655 dots are available at <https://earthdata.nasa.gov/>.

656 Figure 3: Averaged positive and negative mass spectra for the 9 particle types (Aged EC,


657 K-rich, Amine, Dust, Fe, Pb, Na-rich, OC, and Other) of the 73996 sampled particles

658 during the whole sampling period. RPA in the vertical axis refers to relative peak area. m/z

659 in the horizontal axis represents mass-to-charge ratio.



664

665

666 Figure 4: Number fraction of the cloud residual types during the whole sampling period.

667
668

669 Figure 5: Mixing state of secondary markers with the cloud residue particle types.

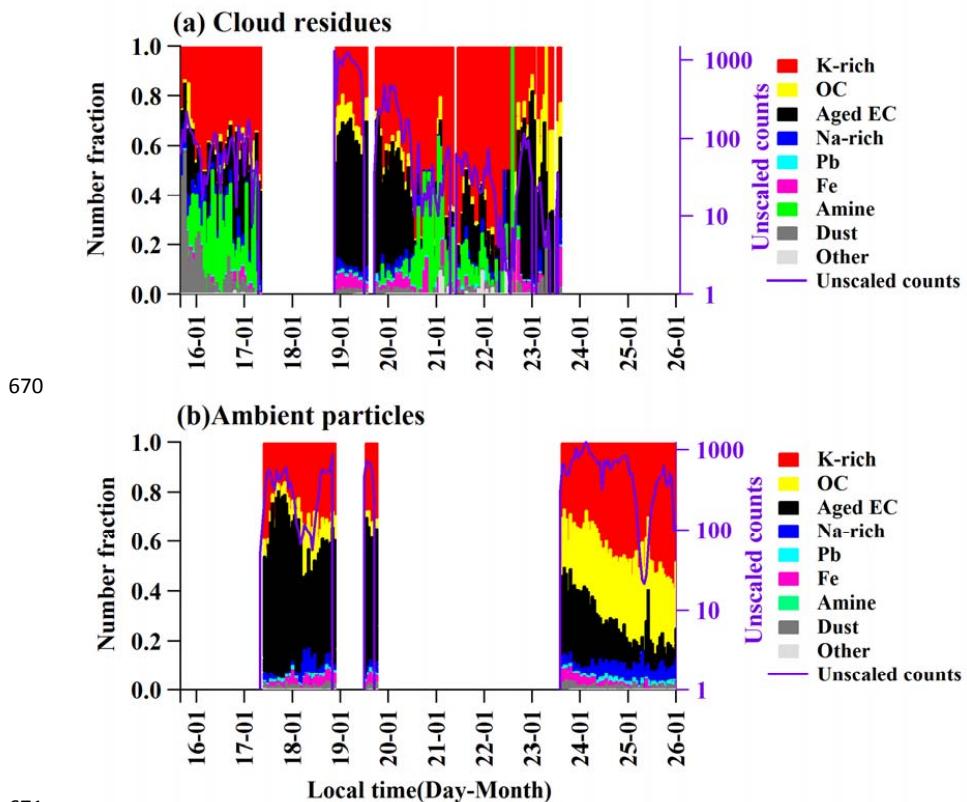
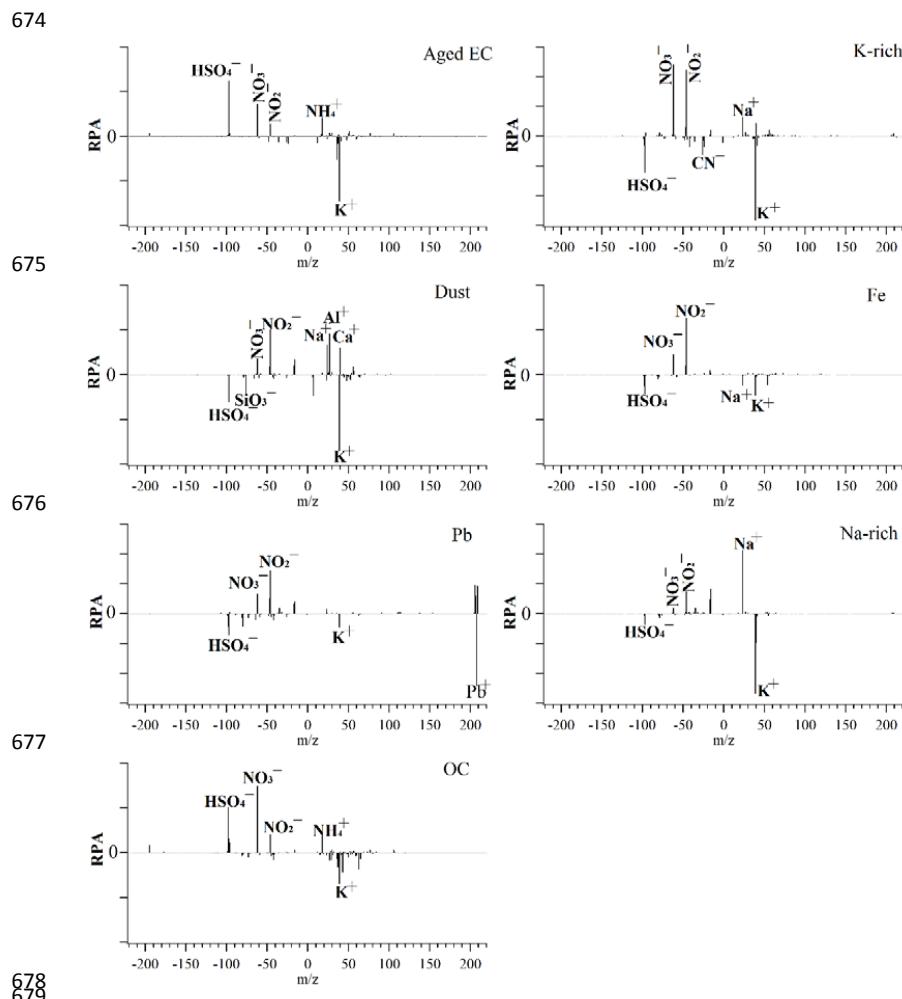
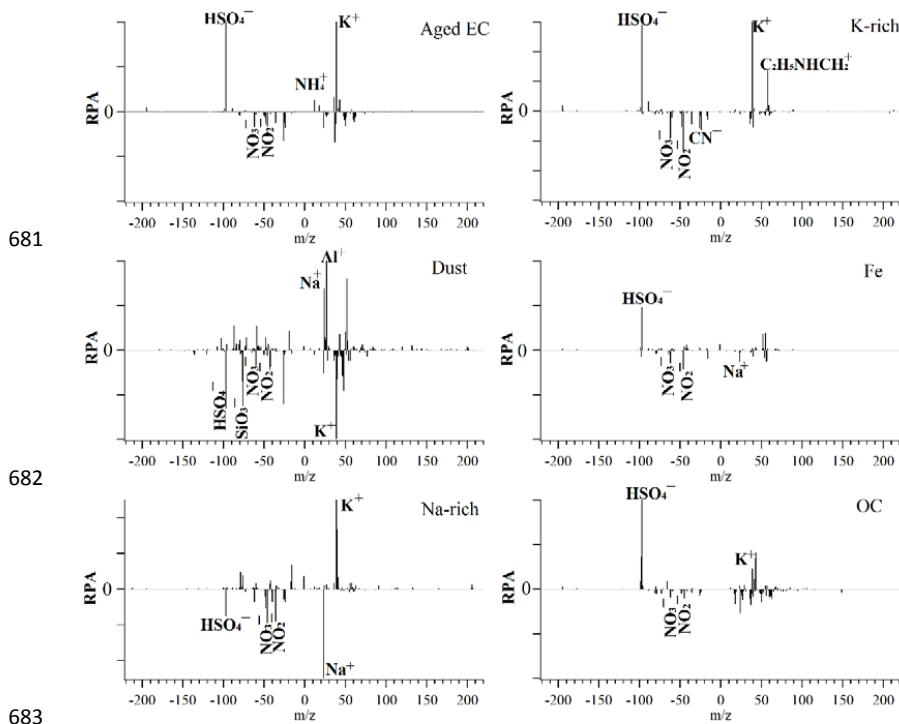




Figure 6: The hourly average variations in the cloud residual and ambient particles during

the whole sampling period.

681
682
683
684
685 Figure 8: Difference between mass spectra for the cloud residues and interstitial particles.